用户名: 密码: 验证码:
浙江省地理参数对地闪的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence Analysis of Geographic Parameters on Cloud-to-Ground Lightning in Zhejiang Province
  • 作者:张祎 ; 姜瑜君 ; 赵伟 ; 李浩
  • 英文作者:Zhang Yi;Jiang Yujun;Zhao Wei;Li Hao;Zhejiang Meteorological Safety Technology Center;Institute of Meteorological Science ZMB;Hangzhou Lightning Protection Safety Testing Co.Ltd.;
  • 关键词:地闪 ; 海拔 ; 坡度 ; 坡向 ; 土地覆盖类型 ; 土壤电导率
  • 英文关键词:cloud-to-ground lightning;;elevation;;slope;;aspect;;land cover type;;soil electric conductivity
  • 中文刊名:QXKJ
  • 英文刊名:Meteorological Science and Technology
  • 机构:浙江省气象安全技术中心;浙江省气象科学研究院;杭州防雷安全检测有限公司;
  • 出版日期:2019-06-15
  • 出版单位:气象科技
  • 年:2019
  • 期:v.47;No.274
  • 基金:浙江省气象科技计划项目(2017YB08)资助
  • 语种:中文;
  • 页:QXKJ201903020
  • 页数:7
  • CN:03
  • ISSN:11-2374/P
  • 分类号:143-149
摘要
利用2007—2016年浙江省地闪数据,数字地形海拔数据、土地覆盖数据和HWSD数据集,定量化分析海拔、坡度、坡向、土地覆盖类型、土壤电导率对该地区地闪的影响。研究结果表明:浙江省地闪主要集中在海拔0~600m、坡度0°~30°;坡向东南地闪次数最高,坡向西地闪次数最低;林地地闪次数最高,湿地地闪次数最低;地闪对应的电导率主要集中在0.1dS/m。单位面积下,地闪次数随海拔、坡度、电导率均呈现先增加后减少的趋势;坡向东、东南地闪次数较多,坡向西、西南地闪次数较少;土地覆盖类型地闪次数最高是城市和建筑区,最低是水体。此外,地闪强度平均值随海拔增加呈现先减小后增加的趋势;陡度平均值随海拔增加而减小。两参数均随坡度增加而减小;随电导率增加呈现先增加后减少的趋势。以5km×5km为网格单元统计网格内各参量平均值进行相关分析发现,浙江地区电流强度、陡度均和海拔、坡度呈现负相关。
        The influences of geographic parameters(elevation,slope,aspect,land cover type and soil electric conductivity)on cloud-to-ground(CG)lightning in Zhejiang Province are quantitatively studied based on the CG lightning data in 2007 and 2016,DEM data(Digital Elevation Model),land cover type data and the HWSD-based China Soil Map(Harmonized World Soil Database).The results show that CG lightning in Zhejiang Province is mainly concentrated in the range of 0 to 600 mabove the sea level,and 0°to 30°with respect to the slope.As for the aspect,the highest number of CG lightning is in the southeast,and the lowest is in the west.Besides,the forest area has the largest number of CG lightning,whereas the wetland has the smallest one.The corresponding soil electric conductivity of the CG lightning is mainly focused on 0.1 dS/m.Taking into account the proportion of area,the number of CG lightning per square kilometer increases firstly,following a decrease trend with the rise of elevation,slope,and soil electric conductivity,respectively. The highest frequency of CG lightning is found in the southern and southeastern slope areas,and the lowest is in the western and southwestern slope areas.The urban area covered with buildings has the largest number of CG lightning per square kilometer,while the water body has the smallest one.The average ground flash intensity decreases first and then increases with the increase of elevation;the mean lightning current steepness shows a decreasing trend with increasing elevation;and these two parameters decrease with the increasing slope and rise gradually with the increase of soil electric conductivity.The correlation analysis between average geographic parameters and lightning activity based on the 5 km×5 km grids shows that both lightning current intensity and steepness have a negative correlation with elevation and slope,respectively.
引文
[1]郑栋,孟青,吕伟涛,等.北京及其周边地区夏季地闪活动时空特征分析[J].应用气象学报,2005,16(5):638-644.
    [2]冯桂力,陈文选,刘诗军,等.山东地区闪电的特征分析[J].应用气象学报,2002,13(3):347-355.
    [3]Shouraseni S R,Rovert C B Jr.Spatial patterns of diurnal variations in summer-season lightning activity across the tropical and subtropical regions of the Northern Hemispheric Americas[J].Meteorol Atmos Phys,2013,121:199-206.
    [4]宋晓爽,郑栋,张义军,等.上海及周边地区地闪活动特征及海陆差异[J].气象科技,2014,42(1):164-172.
    [5]童杭伟,范国武,王海涛.浙江省雷电活动的特点及其与地形和气候的关系[J].电网技术,2008,32(11):99-100.
    [6]程三友,李英杰,刘少峰.基于DEM的大别山地区地貌特征研究[J].东华理工大学学报:自然科学版,2010,33(3):270-275.
    [7]张菡,刘晓璐,房鹏.四川烤烟主产区冰雹灾害风险评估[J].气象科技,2016,44(3):468-473.
    [8]林志强,马艳鲜,德庆,等.基于GIS和RS的西藏森林火险等级计算方法[J].气象科技,2014,42(6):1147-1153.
    [9]赵伟,李哲,史海锋,等.基于层次分析法的浙江电网雷击跳闸孕灾环境敏感性评估[J].高电压技术,2014,43(2):619-626.
    [10]Bourscheidt V,Pinto Junior O,Naccarato K P,et al.The influence of topography on the cloud-to-ground lightning density in South Brazil[J].Atmospheric Research,2009,91:508-513.
    [11]李家启,申双和,夏佰成,等.基于ADTD系统的闪电频次分布特征分析[J].热带气象学报,2011,27(5):710-716.
    [12]李政.重庆地区雷电活动规律及下垫面状况分析[D].南京:南京信息工程大学,2011.
    [13]赵伟,童杭伟,张俊,等.浙江省雷电时空分布特征及影响因素分析[J].电网技术,2013,37(5):1425-1431.
    [14]卢友发,吴世安.河南省闪电活动与复杂下垫面之间的相关性分析[J].信阳师范学院学报(自然科学版),2017,30(1):87-91.
    [15]冯真祯,曾金全,张烨方,等.福建省地闪时空分布特征分析[J].自然灾害学报,2013,22(4):213-220.
    [16]刘岩,王振会,张慧良,等.2007年浙江地区梅雨期间闪电特征的分析[J].气象科学,2009,29(2):225-229.
    [17]Schulz W,Diendorfer G.Lightning characteristics as a function of altitude evaluated from lightning location network data[C]∥International Conference on Lightning and Static Electricity.Proceedings of the 1999International Conference on Lightning and Static Electricity.U S:Society of Automotive Engineers,1999:1-5.
    [18]李霞,汪庆森,巩晴霞,等.苏州地区雷电分布规律分析[J].气象科学,2008,28(3):342-347.
    [19]李良福.山区雷电活动规律研究[C]∥第五届中国国际防雷论坛论文摘编.成都:中国气象学会,2006:72-74.
    [20]李永福,司马文霞,陈林,等.基于雷电定位数据的雷电流参数随海拔变化规律[J].高电压技术,2011,37(7):1634-1641.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700