用户名: 密码: 验证码:
微通道内不混溶气液两相二氧化碳界面动力学行为的格子Boltzmann研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Interfacial Dynamics of Immiscible Gas-Liquid Two-phase Flow for CO_2 in Microchannel: Lattice Boltzmann Method
  • 作者:娄钦 ; 臧晨强 ; 王浩原 ; 李凌
  • 英文作者:LOU Qin;ZANG Chenqiang;WANG Haoyuan;LI Ling;School of Engergy and Power Engineering, University of Shanghai for Science and Technology;
  • 关键词:多相流 ; 格子Boltzmann方法 ; 界面动力学行为
  • 英文关键词:multiphase flow;;lattice Boltzmann method;;interfacial dynamics
  • 中文刊名:JSWL
  • 英文刊名:Chinese Journal of Computational Physics
  • 机构:上海理工大学能源与动力工程学院;
  • 出版日期:2018-05-03 13:31
  • 出版单位:计算物理
  • 年:2019
  • 期:v.36;No.186
  • 基金:国家自然科学基金(51476102)资助项目
  • 语种:中文;
  • 页:JSWL201902003
  • 页数:12
  • CN:02
  • ISSN:11-2011/O4
  • 分类号:31-42
摘要
将高精度的二氧化碳状态方程与气液两相流格子Boltzmann方法中的伪势模型耦合,研究微通道内二氧化碳气液两相流动的界面动力学行为,包括二氧化碳气泡和液滴的分裂、合并、变形,以及气液两相二氧化碳在演化过程中的质量交换.研究发现:当分裂和合并行为达到平衡,并且两相之间不发生质量交换时流动达到稳态.稳态时的流型主要依赖于表面张力,惯性力,管道的润湿性,以及初始体积分数.当表面张力较大时,微通道内形成的二氧化碳气泡或液滴会收缩成圆形,此时二氧化碳气泡或液滴会堵塞微通道,形成段塞流;随着表面张力的减小,形成的气泡或液滴不容易收缩,在微通道内更容易发生变形,出现泡状流或环状流.当壁面润湿性为强疏水性时,二氧化碳在微通道中的流动为环状流,其它润湿性下,流型为段塞流.体积分数较小时,二氧化碳两相流动的流型为段塞流,体积分数较大时,流型为环状流.
        An accurate equation of state(EOS) for carbon dioxide is coupled into an improved lattice Boltzmann equation(LBE) model. With the model continuous interfacial dynamics of carbon dioxide in two phase in a microchannel, including breaking up, coalescence, deformation, and mass exchange between gas and liquid phases, is studied. It is found that flows achieve a steady-state as balance of breaking up and coalescence is reached, and mass exchange occurs. Comprehensive results show that flow shape at steady-state depends mainly on surface tension, inertial force, wettability of channel surface, and initial volume fraction. Specially, formative bubbles or droplets are almost spherical as inertial force is smaller than surface tension. As surface tension overcomes inertial force, slug flow is formed since bubbles or droplets are easy to expand to contact with solid surface. On the other hand, it shows that influence of wettability on flow pattern is also important. Slug flow is observed if contact angle is small while annular flow is observed if contact angel is large. At different volume fraction slug flow and annular flow are obtained.
引文
[1] 付东, 王学敏, 刘建岷. 超临界二氧化碳和模型共聚物的相平衡和成核性质研究 [J]. 物理学报, 2009, 58: 3022-3027.
    [2] PLUG W J, BRUINING J. Capillary pressure for the sand-CO2-water system under various pressure conditions: Application to CO2 sequestration [J]. Adv Water Resour, 2007, 30: 2339-2353.
    [3] 屈年瑞, 高发明. 固态二氧化碳电子结构及性能的理论研究 [J]. 物理学报, 2011, 60: 067102.
    [4] 卢义刚, 彭健新. 运用液体声学理论研究超临界二氧化碳的声特性 [J]. 物理学报, 2007, 57: 1030-1036.
    [5] SCHL?FER F, WALTER L, CLASS H, et al. The regional pressure impact of CO2 storage: A showcase study from the North German Basin [J]. Environ Earth Sci, 2012, 65: 2037-2049.
    [6] XU X, CHEN S, ZHANG D. Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers [J]. Adv Water Resour, 2006, 29: 397-407.
    [7] SASAKI K, FUJII T, NIIBORI Y, et al. Numerical simulation of supercritical CO2 injection into subsurface rock masses [J]. Energy Convers Manage, 2008, 49: 54-61.
    [8] 罗奔毅, 卢义刚. 超临界点附近二氧化碳流体的声速 [J]. 物理学报, 2008, 57: 4397-4401.
    [9] PETTERSEN J. Two-phase flow patterns in microchannel vaporization of CO2 at near-critical pressure [J]. Heat Transfer Engineering, 2004, 25(3): 52-60.
    [10] KATTAN N, THOME J R, FAVRAT D. Flow boiling in horizontal tubes: Part 1—Development of a diabatic two-phase flow pattern map [J]. J Heat Transfer, 1998, 120(1): 140-147.
    [11] HOLDYCH D J, GEORGIADIS J G, BUCKIUS R O. Hydrodynamic instabilities of near-critical CO2 flow in microchannels: Lattice Boltzmann simulation[J]. Phys Fluids, 2004, 16: 1791-1802.
    [12] ZHU Q, ZHOU Q, LI X. Numerical simulation of displacement characteristics of CO2 injected in pore-scale porous media[J]. J Rock Mech Geotech Eng, 2016, 8: 87-92.
    [13] FEI K, CHEN W H, HONG C W. Microfluidic analysis of CO2 bubble dynamics using thermal lattice-Boltzmann method [J]. Microfluid Nanofluid, 2008, 5: 119-129.
    [14] 高诚, KANG Qingjun, 胥蕊娜,等. 基于二氧化碳封存的超临界两相流动的数值研究 [J]. 工程热物理学报, 2014, 35(5): 944-947.
    [15] SHAN X, CHEN H. Lattice Boltzmann model for simulating flows with multiple phases and components [J]. Phys Rev E, 1993, 47(3):1815-1819.
    [16] SHAN X, CHEN H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation [J]. Phys Rev E, 1994, 49(4): 2941-2498.
    [17] MENG X H, WANG L, GUO Z L. Lattice Boitzmann simulation on carbonation of CaO with CO2 [J]. Chinese J Comput Phys, 2014, 31(2): 173-184.
    [18] HUANG F H, LI M H, LEE L L, et al. An accurate equation of state for carbon dioxide [J]. J Chem Eng Jpn, 1985, 18(6): 490-496.
    [19] WANG H L, CHAI Z H, GUO Z L. Lattice Boltzmann simulation of gas transfusion in compact porous media[J]. Chinese J Comput Phys, 2009, 26(3): 389-395.
    [20] ZHOU T, LI X, LIU F. MRT-LBM analysis of acoustic streaming in standing waves between two-dimensional flat plates[J]. Chinese J Comput Phys, 2018, 35(1): 39-46.
    [21] XIE C Y, ZHANG J Y, WANG M R. Lattice Boltzmann modeling of non-Newtonian multiphase fluid displacement[J]. Chinese J Comput Phys, 2016, 33(2): 147-155.
    [22] TAO S, ZHOU L, ZONG Z. Multi-block lattice Boltzmann method for flows around two tandem rotating circular cylinders[J]. Chinese J Comput Phys, 2013, 30(2): 159-168.
    [23] NIE D M, LIN J Z, HUANG L Z. Lattice-Boltzmann investigation of rotating turbulence [J]. Chinese J Comput Phys, 2013, 30(1): 11-18.
    [24] 何雅玲, 李庆, 王勇, 等. 格子Boltzmann方法的工程热物理应用[J]. 科学通报, 2009, 54(18): 2638-2656.
    [25] YU Z, FAN L S. An interaction potential based lattice Boltzmann method with adaptive mesh refinement (AMR) for two-phase flow simulation [J]. J Comput Phys, 2009, 228: 6456-6478.
    [26] GUO Z L, ZHENG C, SHI B. Discrete lattice effects on the forcing term in the lattice Boltzmann method [J]. Phys Rev E, 2002, 65: 046308.
    [27] MARTYS N S, CHEN H. Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method [J]. Phys Rev E, 1996, 53: 743-750.
    [28] 陈则韶, 胡芃,程文龙. 饱和蒸气密度、熔和蒸发潜热的通用对比态推算式[J]. 工程热物理学报, 2003, 24(2): 198-201.
    [29] LOU Q, ZANG C, YANG M, XU H. Lattice Boltzmann simulation of immiscible displacement in the cavity with different channel congurations [J]. Int J Mod Phys C, 2017, 28: 1750136.
    [30] ZHANG R, HE X, CHEN S. Interface and surface tension in incompressible lattice Boltzmann multiphase model [J]. Comput Phys Commun, 2000, 129: 121-130.
    [31] HAO L, CHENG P. Lattice Boltzmann simulations of liquid droplet dynamic behavior on a hydrophobic surface of a gas flow channel [J]. J Power Sources, 2009, 190: 435-446.
    [32] MARCONI S, CHOPARD B, LATT J. Reducing the compressibility of a lattice Boltzmann fluid using a repulsive force [J]. Int J Mod Phys C, 2003, 14(08): 1015-1026.
    [33] ZHANG J, KWOK D Y. Pressure boundary condition of the lattice Boltzmann method for fully developed periodic flows [J]. Phys Rev E, 2006, 73: 047702.
    [34] IWAHARA D, SHINTO H, MIYAHARA M, et al. Liquid drops on homogeneous and chemically heterogeneous surfaces: A two-dimensional lattice Boltzmann study [J]. Langmuir, 2003, 19: 9086-9093.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700