用户名: 密码: 验证码:
应力对可降解金属血管支架降解的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of stress on degradation of biodegradable metal for vascular stent application: a review
  • 作者:逯赟 ; 顾雪楠 ; 樊瑜波
  • 英文作者:Lu Yun;Gu Xuenan;Fan Yubo;School of Biological Science and Medical Engineering, Beihang University;Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University;
  • 关键词:金属 ; 生物降解 ; 环境 ; 腐蚀 ; 组织工程 ; 血管支架 ; 可降解金属 ; 应力腐蚀 ; 腐蚀疲劳 ; 生物材料 ; 国家自然科学基金
  • 英文关键词:,Metals;;Biodegradation,Environmental;;Corrosion;;Tissue Engineering
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:北京航空航天大学生物与医学工程学院;北京航空航天大学生物医学工程高精尖创新中心;
  • 出版日期:2018-10-10 17:00
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.859
  • 基金:国家自然科学基金(51401007,项目负责人:顾雪楠);; 全国优秀博士学位论文作者专项基金(201463,项目负责人:顾雪楠);; 中国科协青年人才托举工程(2017QNRC001,项目负责人:顾雪楠)~~
  • 语种:中文;
  • 页:XDKF201902022
  • 页数:7
  • CN:02
  • ISSN:21-1581/R
  • 分类号:133-139
摘要
背景:植入体内后,血管支架处于复杂的应力及腐蚀环境,可引发支架应力腐蚀开裂及腐蚀疲劳断裂,导致支架早期失效。目的:综述不同生理应力环境下可降解金属支架的降解情况及其降解机制。方法:检索PubMed数据库、中国知网数据库2000至2018年发表的文献,英文检索词为"biodegradable,degradation,stress",中文检索词为"镁合金,应力腐蚀"。结果与结论:镁、铁和锌是目前最具代表性的3种可降解金属材料,在血管支架领域具有良好的应用前景。可降解支架植入体内后,支撑血管直至其完成血管重建,在此过程中支架受到复杂的应力作用,包括拉应力、压应力、剪切应力及循环荷载等。应力对支架降解的影响不可忽视,其可加快支架力学性能的衰减,甚至导致支架断裂。探明应力对可降解金属降解行为的影响及其降解机制,对血管支架材料的改性、支架构型设计与优化至关重要。
        BACKGROUND: The combined action of physiological stress and corrosion may cause stress-assisted corrosion and cracking of biodegradable vascular stents, and even lead to early failure of the stents. OBJECTIVE: To review the degradation of biodegradable metal stents under physiological stress environment and the relevant mechanisms.METHODS: PubMed and CNKI databases were searched for relevant articles published from 2000 to 2018, using the keywords of "biodegradable, degradation, stress" in English and Chinese, respectively. RESULTS AND CONCLUSION: Magnesium, iron and zinc are the representatives of biodegradable metal materials, which have shown good application prospects in the field of vascular stents. Biodegradable stents work via balloon dilatation, and then support vessels until the complete revascularization under complex stresses, including tensile stress, compressive stress, shear stress and cyclic loading. We cannot ignore the effects of stresson the degradation of biodegradable metals; otherwise, the implantation of biodegradable metal stents may fail due to fastened attenuation of mechanical performance or stent fracture. To explore the effect of stress on biodegradable metal stent degradation and its relevant mechanism is crucial to the modification, configuration design and optimization of vascular stent materials.
引文
[1]Moravej M,Mantovani D.Biodegradable metals for cardiovascular stent application:interests and new opportunities.Int J Mol Sci.2011;12(7):4250-4270.
    [2]Li N,Zheng Y.Novel magnesium alloys developed for biomedical application:a review.J Mater Sci Technol.2013;29(6):489-502.
    [3]Zartner P,Cesnjevar R,Singer H,et al.First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby.Catheter Cardiovasc Interv.2005;66(4):590-594.
    [4]杜博,赵学忠.冠心病患者支架内再狭窄的危险因素[J].中国老年学杂志,2015,9(10):2708-2710.
    [5]Niinomi M,Nakai M,Hieda J.Development of new metallic alloys for biomedical applications.Acta Biomaterialia.2012;8(11):3888-3903.
    [6]Staiger MP,Pietak AM,Huadmai J,et al.Magnesium and its alloys as orthopedic biomaterials:a review.Biomaterials.2006;27(9):1728-1734.
    [7]Garza L,Aude YW,Saucedo JF.Can we prevent in-stent restenosis?Curr Opini Cardiol.2002;17(5):518.
    [8]Seitz JM,Durisin M,Goldman J,et al.Recent advances in biodegradable metals for medical sutures:a critical review.Adv Healthc Mater.2015;4(13):1915-1936.
    [9]Francis A,Yang Y,Virtanen S,et al.Iron and iron-based alloys for temporary cardiovascular applications.J Mater Sci Mater Med.2015;26(3):138.
    [10]Tsuji T,Tamai H,Igaki K,et al.Biodegradable polymeric stents.Curr Interv Cardiol Rep.2001;3(1):10-17.
    [11]Ramcharitar S,Serruys PW.Fully biodegradable coronary stents.Am JCardiovasc Drugs.2008;8(5):305-314.
    [12]Meng B,Wang J,Zhu N,et al.Study of biodegradable and self-expandable PLLA helical biliary stent in vivo and in vitro.J Mater Sci Mater Med.2006;17(7):611-617.
    [13]Zhu X,Braatz RD.A mechanistic model for drug release in PLGAbiodegradable stent coatings coupled with polymer degradation and erosion.J Biomed Mater Res A.2015;103(7):2269-2279.
    [14]Ma E,Xu J.Biodegradable alloys:the glass window of opportunities.Nat Mater.2009;8(11):855.
    [15]Im SH,Jung Y,Kim SH.Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents.Acta Biomaterialia.2017;60(1):3-22.
    [16]LaDisa JF,Guler I,Olson LE,et al.Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation.Ann Biomed Eng.2003;31(8):972-980.
    [17]Carlier SG,van Damme LCA,Blommerde CP,et al.Augmentation of wall shear stress inhibits neointimal hyperplasia after stent implantation:inhibition through reduction of inflammation?Circulation.2003;107(21):2741-2746.
    [18]Peuster M,Hesse C,Schloo T,et al.Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta.Biomaterials.2006’27(28):4955-4962.
    [19]Guillory RJ,Bowen PK,Hopkins SP,et al.Corrosion characteristics dictate the long-term inflammatory profile of degradable zinc arterial implants.ACS Biomater Sci Eng.2016;2(12):2355-2364.
    [20]Gu X,Zheng Y,Cheng Y,et al.In vitro corrosion and biocompatibility of binary magnesium alloys.Biomaterials.2009;30(4):484-498.
    [21]Tamimi F,Le Nihouannen D,Bassett DC,et al.Biocompatibility of magnesium phosphate minerals and their stability under physiological conditions.Acta Biomaterialia.2011;7(6):2678-2685.
    [22]Saris NEL,Mervaala E,Karppanen H,et al.Magnesium:an update on physiological,clinical and analytical aspects.Clinica Chimica Acta.2000;294(1-2):1-26.
    [23]Kirkland NT,Birbilis N,Staiger MP.Assessing the corrosion of biodegradable magnesium implants:a critical review of current methodologies and their limitations.Acta Biomaterialia.2012;8(3):925-936.
    [24]White RE,Hartzell HC.Magnesium ions in cardiac function:regulator of ion channels and second messengers.Biochem Pharmacol.1989;38(6):859-867.
    [25]Gu XN,Zheng YF.A review on magnesium alloys as biodegradable materials.Front Mater Sci China.2010;4(2):111-115.
    [26]郑玉峰,吴远浩.处在变革中的医用金属材料[J].金属学报,2017,53(3):257-297.
    [27]Unigovski Y,Eliezer A,Abramov E,et al.Corrosion fatigue of extruded magnesium alloys.Mater Sci Eng A.2003;360(1-2):132-139.
    [28]Jafari S,Harandi SE,Raman RKS.A review of stress-corrosion cracking and corrosion fatigue of magnesium alloys for biodegradable implant applications.JOM.2015;67(5):1143-1153.
    [29]H?nzi AC,Gerber I,Schinhammer M,et al.On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys.Acta Biomaterialia.2010;6(5):1824-1833.
    [30]Li X,Chu C,Chu PK.Effects of external stress on biodegradable orthopedic materials:A review.Bioact Mater.2016;1(1):77-84.
    [31]Jafari S,Raman RKS,Davies CHJ,et al.Stress corrosion cracking and corrosion fatigue characterisation of MgZn1Ca0.3(ZX10)in a simulated physiological environment.J Mech Behav Biomed Mater.2017;65:634-643.
    [32]Koo Y,Jang Y,Yun Y.A study of long-term static load on degradation and mechanical integrity of Mg alloys-based biodegradable metals.Mater Sci Eng B Solid State Mater Adv Technol.2017;219:45-54.
    [33]T?rne K,?rnberg A,Weissenrieder J.Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments.Acta Biomaterialia.2017;(48):541-550.
    [34]Zhou LF,Liu ZY,Wu W,et al.Stress corrosion cracking behavior of ZK60magnesium alloy under different conditions.Int J Hydrogen Energ.2017;42(41):26162-26174.
    [35]Choudhary L,Szmerling J,Goldwasser R,et al.Investigations into stress corrosion cracking behaviour of AZ91D magnesium alloy in physiological environment.Procedia Eng.2011;10(7):518-523.
    [36]Choudhary L,Raman RKS.Mechanical integrity of magnesium alloys in a physiological environment:Slow strain rate testing based study.Eng Fract Mech.2013;(103):94-102.
    [37]宋仁国,杨芳儿,翁晓红,等.ZE41镁合金应力腐蚀开裂研究[C].全国氢脆与应力腐蚀及工程应用学术研讨会论文集,四川江油,2007:33-36.
    [38]王璐科,王振家,马全友,等.AZ91D镁合金在两种盐溶液和空气中的一般腐蚀和应力腐蚀[J].腐蚀与防护,2006,27(12):599-603.
    [39]许越,李家学,李莎.镁合金应力腐蚀机理及其影响因素分析[J].材料科学与工艺,2008,16(3):314-318.
    [40]Chu CL,Han X,Bai J,et al.Surface modification of biomedical magnesium alloy wires by micro-arc oxidation.Trans Nonferrous Met Soc China.2014;24(4):1058-1064.
    [41]Winzer N,Atrens A,Dietzel W,et al.Evaluation of the delayed hydride cracking mechanism for transgranular stress corrosion cracking of magnesium alloys.Mater Sci Eng A.2007;466(1-2):18-31.
    [42]Winzer N,Atrens A,Song G,et al.A critical review of the stress corrosion cracking(SCC)of magnesium alloys.Adv Eng Mater.2005;7(8):659-693.
    [43]Yang GF,Kim YC,Han HS,et al.In vitro dynamic degradation behavior of new magnesium alloy for orthopedic applications.J Biomed Mater Res B Appl Biomater.2015;103(4):807-815.
    [44]Dong L,Song X,Ye Y,et al.Experimental research on degradation performance of magnesium alloy affected by mechanical environment.MATEC Web of Conferences.2015;31:01006.
    [45]Zheng Y,Li Y,Chen J,et al.Effects of tensile and compressive deformation on corrosion behaviour of a Mg-Zn alloy.Corr Sci.2015;(90):445-450.
    [46]Denkena B,K?hler J,Stieghorst J,et al.Influence of stress on the degradation behavior of Mg LAE442 implant systems.Procedia Cirp.2013;5(2):189-195.
    [47]Wang H,Shi Z.In vitro biodegradation behavior of magnesium and magnesiumalloy.J Biomed Mater Res B Appl Biomater.2011;98(2):203.
    [48]劳永华,张文威,徐笑凡,等.AZ31镁合金在人工血浆中的动态降解行为[J].稀有金属材料与工程,2014,43(5):1242-1245.
    [49]Wang J,Giridharan V,Shanov V,et al.Flow-induced corrosion behavior of absorbable magnesium-based stents.Acta Biomaterialia.2014;10(12):5213-5223.
    [50]Wang J,He Y,Maitz MF,et al.A surface-eroding poly(1,3-trimethylene carbonate)coating for fully biodegradable magnesium-based stent applications:toward better biofunction,biodegradation and biocompatibility.Acta Biomaterialia.2013;9(10):8678-8689.
    [51]Lévesque J,Hermawan H,DubéD,et al.Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials.Acta Biomaterialia.2008’4(2):284-295.
    [52]Jafari S,Raman RKS,Davies CHJ,et al.Corrosion fatigue of a magnesium al oy in modified simulated body fluid.Eng Fract Mech.2015;137:2-11.
    [53]Gu XN,Zhou WR,Zheng YF,et al.Corrosion fatigue behaviors of two biomedical Mg alloys-AZ91D and WE43-in simulated body fluid.Acta Biomaterialia.2010;6(12):4605-4613.
    [54]Bian D,Zhou W,Liu Y,et al.Fatigue behaviors of HP-Mg,Mg-Ca and Mg-Zn-Ca biodegradable metals in air and simulated body fluid.Acta Biomaterialia.2016;(41):351-360.
    [55]Nie FL,Zheng YF,Wei SC,et al.In vitro corrosion,cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron.Biomed Mater.2010;5(6):065015.
    [56]Li H,Zheng Y,Qin L.Progress of biodegradable metals Prog Nat Sci Mater Int.2014;24(5):414-422.
    [57]郑玉峰,杨宏韬.血管支架用可降解金属研究进展[J].金属学报,2017,53(10):1227-1237.
    [58]Moravej M,Purnama A,Fiset M,et al.Electroformed pure iron as a new biomaterial for degradable stents:In vitro degradation and preliminary cell viability studies.Acta Biomaterialia.2010;6(5):1843-1851.
    [59]Zhu S,Huang N,Xu L,et al.Biocompatibility of pure iron:in vitro assessment of degradation kinetics and cytotoxicity on endothelial cells.Mater Sci Eng C.2009;29(5):1589-1592.
    [60]Liu B,Zheng YF.Effects of alloying elements(Mn,Co,Al,W,Sn,B,C and S)on biodegradability and in vitro biocompatibility of pure iron.Acta Biomaterialia.2011;7(3):1407-1420.
    [61]吴远浩,周晓晨,李楠,等.可降解金属血管支架研究进展[J].中国材料进展,2012,31(9):27-34.
    [62]Bowen PK,Shearier ER,Zhao S,et al.Biodegradable metals for cardiovascular stents:from clinical concerns to recent Zn‐Alloys.Adv Healthc Mater.2016;5(10):1121-1140.
    [63]Isotalo TM,Nuutine JP,Vaajanen A,et al.Biocompatibility properties of a new braided biodegradable urethral stent:a comparison with a biodegradable spiral and a braided metallic stent in the rabbit urethra.BJU Int.2006;97(4):856-859.
    [64]Li HF,Xie XH,Zheng YF,et al.Development of biodegradable Zn-1Xbinary alloys with nutrient alloying elements Mg,Ca and Sr.Sci Rep.2015;5:10719.
    [65]Chen Y,Zhang W,Maitz MF,et al.Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline.Corr Sci.2016;111:541-555.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700