用户名: 密码: 验证码:
芬顿氧化法处理铝合金化铣清洗液的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Treatment of Cleaning Solution of Chemical Milling for Aluminum Alloy by Fenton Oxidation Process
  • 作者:刘会军 ; 乔永莲 ; 董宇 ; 张书海 ; 张燕燕
  • 英文作者:LIU Hui-jun;QIAO Yong-lian;DONG Yu;ZHANG Shu-hai;ZHANG Yan-yan;Laboratory for Metal Corrosion and Protection, Chinese Academy of Sciences;Shenyang Aircraft Industries (Group) Co., Ltd;PLA Military Representative Office in Shenyang Aircraft Industries(Group) Co., Ltd;
  • 关键词:铝合金 ; 化铣 ; 三乙醇胺 ; 芬顿氧化 ; CODCr
  • 英文关键词:aluminum alloy;;chemical milling;;triethanolamine;;fenton oxidation;;CODCr
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:中国科学院金属研究所金属腐蚀与防护实验室;沈阳飞机工业(集团)有限公司;中国人民解放军驻沈阳飞机工业(集团)有限公司军事代表室;
  • 出版日期:2017-02-20
  • 出版单位:表面技术
  • 年:2017
  • 期:v.46
  • 基金:辽宁省自然科学基金-航空联合开放基金(2015022001)~~
  • 语种:中文;
  • 页:BMJS201702037
  • 页数:4
  • CN:02
  • ISSN:50-1083/TG
  • 分类号:227-230
摘要
目的铝合金化铣加工过程产生的大量清洗液,因三乙醇胺的存在而使其具有很高的化学吸氧量(COD),必须通过有效的方法予以除去才能安全排放。方法采用芬顿氧化法对化铣清洗废液进行处理,通过试验方法优化,研究了废液初始pH、H_2O_2浓度、c(H_2O_2)/c(Fe~(2+))以及芬顿反应时间对清洗液COD_(Cr)去除率的影响。结果初始pH值对COD_(Cr)去除率的影响最大。在正交试验的基础上,通过单因素试验进一步优化了反应条件,得出芬顿氧化法去除化铣清洗液中三乙醇胺的最佳反应条件为:pH=2.5,H_2O_2浓度为325mmol/L,c(H_2O_2)/c(Fe~(2+))=12.5,反应时间为45 min。在此条件下,出水COD_(Cr)可降至40 mg/L以下,COD_(Cr)去除率达到99.1%。结论芬顿氧化法可以有效地降解化铣清洗液中的三乙醇胺。
        Much cleaning solution generated during chemical milling for aluminum alloy must be effectively removed before safe discharge because it has high chemical oxygen demand(COD) due to the presence of triethanolamine. The cleaning solution produced during the chemical milling was treated by fenton oxidation process. The effects of initial pH, H_2O_2 concentration, c(H_2O_2)/c(Fe~(2+)) and fenton reaction time of the effluent on COD_(Cr) removal rate of the cleaning solution were studied by optimizing test methods. The initial pH had most significant influence on the COD_(Cr) removal rate. Based on the orthogonal test, single factor experiment was carried out to further optimize reaction conditions, and optimum conditions for removing triethanolamine in chemical milling cleaning solution by virtue of fenton oxidation process were as follows: pH=2.5, H_2O_2 concentration=325 mmol/L, c(H_2O_2)/c(Fe~(2+))=12.5 and reaction time=45 min. Under such circumstance, effluent COD_(Cr) might decrease to 40 mg/L and a COD_(Cr) removal rate might amount to 99.1%. The triethanolamine in cleaning solution for chemical milling can be effectively degraded by fenton oxidation process.
引文
[1]刘兵,彭超群,王日初,等.大飞机用铝合金的研究现状及展望[J].中国有色金属学报,2010,20(9):1705—1715.LIU Bing,PENG Chao-qun,WANG Ri-chu,et al.Recent Development and Prospects for Giant Plane Aluminum Alloys[J].The Chinese Journal of Nonferrous Metals,2010,20(9):1705—1715.
    [2]刘章.航空铝材化铣废液回用技术研究[D].南昌:南昌航空大学,2011.LIU Zhang.Research on Recycling Technology of Waste Solution from Chemical Milling for Aviation Aluminum[D].Nanchang:Nanchang Hangkong University,2011.
    [3]吴颖,郦和生,王岽,等.醇胺类的生物降解动力学及其对活性污泥法影响研究[J].工业水处理,2013,33(3):68—70,80.WU Ying,LI He-sheng,WANG Dong,et al.Study on Biodegradation Kinetics of Alcohol Amines and the Influence of N-methyl Diethanolamine on Activated Sludge Process[J].Industrial Water Treatment,2013,33(3):68—70,80.
    [4]GIOVANNA S,CARLO F M,PAOLA C,et al.Mechanism of Anaerobic Degradation of Triethanolamine by a Homoacetogenic Bacterium[J].Biochemical Biophysical Research Communications,2006,349:480—484.
    [5]方嘉声,于光认,陈晓春,等.石墨烯掺杂分子筛负载氧化铁芬顿催化降解苯酚影响因素的研究[J].环境科学学报,2015,35(11):3529—3537.FANG Jia-sheng,YU Guang-ren,CHEN Xiao-chun,et al.The Influence Factors on the Fenton Catalytic Degradation of Phenol Using Iron-loaded Graphene Modified Molecular Sieve Catalyst[J].Acta Scientiae Circumstantiae,2015,35(11):3529—3537.
    [6]洪晨,邢奕,司艳晓,等.芬顿试剂氧化对污泥脱水性能的影响[J].环境科学研究,2014,27(6):615—622.HONG Chen,XING Yi,SI Yan-xiao,et al.Influence of Fenton's Reagent Oxidation on Sludge Dewaterability[J].Research of Environmental Sciences,2014,27(6):615—622.
    [7]孙艳慧,张卿,季常青.Fenton试剂在有机废水处理中的应用[J].净水技术,2014,33(1):25—29.SUN Yan-hui,ZHANG Qing,JI Chang-qing.Application of Fenton Reagent in Organic Wastewater Treatment[J].Water Purification Technology,2014,33(1):25—29.
    [8]张先炳,袁佳佳,董文艺,等.芬顿法处理活性艳红X-3B的试验优化及降解规律[J].化工学报,2013,64(3):1049—1054.ZHANG Xian-bing,YUAN Jia-jia,DONG Wen-yi,et al.Process Optimization for Degradation of Reactive Brilliant Red X-3B by Fenton's Reagent[J].CIESC Journal,2013,64(3):1049—1054.
    [9]张金玲,于军亭,张帅.芬顿法深度处理造纸废水[J].水资源与水工程学报,2011,22(3):154—156.ZHANG Jin-ling,YU Jun-ting,ZHANG Shuai.Advanced Treatment of Papermaking Wastewater by Fenton Method[J].Journal of Water Resources&Water Engineering,2011,22(3):154—156.
    [10]林海,王亚楠,韦威,等.芬顿试剂处理煤矿矿井水中硫化氢技术[J].煤炭学报,2012,37(10):1760—1764.LIN Hai,WANG Ya-nan,WEI Wei,et al.Treatment of H2S in Mine Water Using Fenton Reagent[J].Journal of China Coal Society,2012,37(10):1760—1764.
    [11]孙敬权,尚鸿艳.芬顿氧化法处理高浓度霜脲氰废水的实验研究[J].精细化工中间体,2013,43(5):67—70.SUN Jing-quan,SHANG Hong-yan.Study on Fenton Oxidation of Wastewater Containing High Concentration of Cymoxanil[J].Fine Chemical Intermediates,2013,43(5):67—70.
    [12]欧晓霞,张凤杰,王崇,等.芬顿氧化法处理水中酸性品红的研究[J].环境工程学报,2010,4(7):1453—1456.OU Xiao-xia,ZHANG Feng-jie,WANG Chong,et al.Oxidation of Acid Magentain Aqueous Solution by Fenton's Reagent[J].Chinese Journal of Environmental Engineering,2010,4(7):1453—1456.
    [13]汪林,杜茂安,李欣.芬顿氧化法深度处理亚麻生产废水[J].工业用水与废水,2008,39(1):52—54.WANG Lin,DU Mao-an,LI Xin.Advanced Treatment of Wastewater from Flax Production by Fenton-Oxidation Process[J].Industrial Water&Wastewater,2008,39(1):52—54.
    [14]FU J,ZHANG Z M,TANG J Y,et al.Photoreduction of Reactive Brilliant Red X-3B by Ultraviolet Irradiation/Potassium Borohydride/Sodium Bisulfite[J].Journal of Environmental Engineering,2010,136(11):1314—1319.
    [15]HERNEY-RAMIREZ J,LAMPINEN M.Experimental Design to Optimize the Oxidation of Orange II Dye Solution Using a Clay-Based Fenton-Like Catalyst[J].Industrial&Engineering Chemistry Research,2008,47(2):284—294.
    [16]WANG S A.Comparative Study of Fenton and Fenton-like Reaction Kinetics in Decolourisation of Wastewater[J].Dyes and Pigments,2008,76(3):714—720.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700