用户名: 密码: 验证码:
高温和低氧胁迫对两种规格刺参半致死时间及生理机能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of high temperature and hypoxia on median lethal time and physiological function in sea cucumber Apostichopus japonicus of two sizes
  • 作者:周晓梦 ; 张秀梅 ; 李文涛
  • 英文作者:ZHOU Xiaomeng;ZHANG Xiumei;LI Wentao;Key Laboratory of Mariculture,Ministry of Education;Ocean University of China;Functional Laboratory of Marine Fisheries Science and Food Production Process;Qingdao National Laboratory for Marine Science and Technology;
  • 关键词:高温 ; 低氧 ; 刺参 ; 半致死时间 ; 代谢 ; 抗氧化能力 ; 皮质醇
  • 英文关键词:high temperature;;hypoxia;;Apostichopus japonicus;;median lethal time;;metabolism;;antioxidant ability;;cortisol
  • 中文刊名:ZSCK
  • 英文刊名:Journal of Fishery Sciences of China
  • 机构:中国海洋大学海水养殖教育部重点实验室;青岛海洋科学与技术国家实验室海洋渔业科学与食物产出过程功能实验室;
  • 出版日期:2017-12-01 11:24
  • 出版单位:中国水产科学
  • 年:2018
  • 期:v.25
  • 基金:国家海洋公益性行业科研专项(201405010);; 青岛海洋科学与技术国家实验室鳌山科技创新计划项目(2015ASKJ02)
  • 语种:中文;
  • 页:ZSCK201801008
  • 页数:14
  • CN:01
  • ISSN:11-3446/S
  • 分类号:63-76
摘要
通过实验生态学方法,针对2种规格的刺参(Apostichopus japonicus)(大:28.00~36.00 g;小:9.00~13.00 g),测定温度为(25.0±0.5)℃溶解氧(DO)水平为(1.0±0.1)mg/L条件下刺参的半致死时间(LT_(50));比较分析了DO水平分别为(1.0±0.1)mg/L、(3.0±0.1)mg/L及6.5 mg/L(正常DO含量)条件下2种规格刺参的昼夜代谢水平;监测了DO水平分别为(1.0±0.1)mg/L和(3.0±0.1)mg/L时低氧胁迫24 h及复氧72 h期间,2种规格刺参体腔液和呼吸树中的谷胱甘肽(GSH)含量、总抗氧化能力(T-AOC)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性及体腔液中皮质醇水平的变化,以探究夏季高温期(25.0±0.5)℃低氧胁迫对不同规格刺参半致死时间及生理机能的影响。结果显示:当DO浓度为1 mg/L时,大规格刺参半致死时间(LT_(50))为33.37 h,小规格刺参为28.84 h,2种规格刺参的代谢水平显著低于常氧对照组,夜间代谢强度高于白天,且小规格刺参的代谢强度高于大规格刺参。1 mg/L低氧胁迫期间,大规格刺参体腔液及2种规格刺参呼吸树中上述4种抗氧化指标的变化趋势大致相同,与对照组相比,随着低氧暴露时间的延长,GSH含量下降,SOD和T-AOC活力降低,CAT活力升高;然而胁迫结束时其GSH含量、CAT、SOD和T-AOC活力均与对照组无显著差异(P>0.05)。解除胁迫复氧72 h后,2种规格刺参体腔液的4种抗氧化指标均恢复到对照组水平;而呼吸树的这4种指标则未完全恢复。3 mg/L低氧胁迫期间,2种规格刺参体腔液和呼吸树的GSH含量、CAT、SOD和T-AOC活力的变化趋势与1 mg/L组大体一致,复氧72 h后体腔液的各项指标恢复到对照组水平;除T-AOC,呼吸树的其余3种指标亦完全恢复。低氧胁迫后小规格刺参的恢复能力高于大规格刺参。在DO为1 mg/L和3 mg/L条件下,胁迫结束时2种规格刺参体腔液中的皮质醇含量显著高于对照组(P<0.05),且大规格刺参皮质醇含量高于小规格,复氧后二者均恢复到对照水平。结果表明,低氧胁迫持续时间不超过其半致死时间(本研究以24h为例),刺参可通过自身调节减轻机体的氧化损伤;一旦超出半致死时间,将产生不可逆损伤,最终导致死亡。
        An experimental ecological method was used to determinate the effects of hypoxia on the median lethal time(LT_(50)) and physiological function of two sizes of sea cucumber Apostichopus japonicus(large-size: with a body weight ranging from 28.00 g to 36.00 g; small-size: with a body weight ranging from 9.00 g to 13.00 g) at high temperature(25℃). The LT_(50) in the two sizes of sea cucumber at a dissolved oxygen(DO) concentration of 1 mg/L were investigated. The diurnal metabolism in the two sizes of sea cucumber at DO concentrations of 1, 3, and 6.5 mg/L(normoxia) were estimated. The glutathione(GSH) content and activities of superoxide dismutase(SOD), catalase(CAT), and total antioxidant capability(T-AOC) in the coelomic fluid and respiratory tree, as well as the cortisol level in the coelomic fluid at 24 h hypoxia stress(the DO concentrations of 1 mg/L and 3 mg/L) and 72 h reoxygenation of the two sizes of sea cucumber were also measured. The results showed that, at first, at the DO concentration of 1 mg/L, the LT_(50) for the large and small-size sea cucumber was 33.37 h and 28.84 h, respectively. The metabolism in the two sizes of sea cucumber was significantly lower than that in the normoxia condition(hereafter control), the overnight metabolic intensity was higher than during the daytime, and metabolic intensity in the small-size sea cucumber was higher than in the large-size one. Secondly, during the 1 mg/L hypoxia stress, the variations of the four antioxidant indices in the coelomic fluid in the large-size sea cucumber and those in the respiratory tree in both sizes of sea cucumber were similar: compared with the control group, the hypoxia exposure decreased the content of GSH and the activity of SOD and T-AOC, but increased the activity of CAT. However, at the end of the hypoxia stress, the content of GSH and the activity of SOD, CAT, and T-AOC showed no significant difference from the control group. After 72 h of reoxygenation, the above four antioxidant indexes of the coelomic fluid in the two size groups of sea cucumber recovered to the level of the control group but the four antioxidant indexes of the respiratory tree did not. During the 3 mg/L hypoxia, the variation trend of the four antioxidant indexes in the coelomic fluid and respiratory tree of sea cucumber was consistent with those in the 1 mg/L group. After 72 h of reoxygenation, the above four antioxidant indexes of the coelomic fluid in sea cucumber recovered to the level of the control group. Except for T-AOC, the other three indices of the respiratory tree also recovered. The recovery ability of the small-size sea cucumber was higher than that of the large one after hypoxia stress. Thirdly, at the DO concentrations of 1 mg/L and 3 mg/L, the content of cortisol in the coelomic fluid of both sizes of sea cucumber was significantly higher than the control group at the end of the stress(P<0.05). The level of cortisol in the coelomic fluid of the large-size sea cucumber was higher than in the small one but both recovered to the control level after reoxygenation. The results showed that if the hypoxia duration is less than the LT_(50)(24 h, for example, in this paper), sea cucumber can alleviate the oxidative damage. However, if the time under hypoxia exceeds the threshold value, sea cucumbers will suffer irreversible damage and die.
引文
[1]Liao Y L.Fauna Sinica,Echinoderm Animal,Holothurioider[M].Beijing:Science Press,1997.[廖玉麟.中国动物志,棘皮动物门,海参纲[M].北京:科学出版社,1997.]
    [2]Liu G S,Cai X Y,Tong F,et al.Investigation of massive death of sea cucumber in artificial reef zone of Shuangdao Bay,Weihai[J].Fishery Information&Strategy,2014,29(2):122-129.[刘国山,蔡星媛,佟飞,等.威海双岛湾人工鱼礁区刺参大面积死亡原因初探[J].渔业信息与战略,2014,29(2):122-129.]
    [3]Pichavant K,Person-Le-Ruyet J,Bayon N L,et al.Comparative effects of long-term hypoxia on growth,feeding and oxygen consumption in juvenile turbot and European sea bass[J].Journal of Fish Biology,2001,59(4):875-883.
    [4]Wei L Z.Effects of low dissolved oxygen on the growth of Chinese shrimp,Fennerpoenaeus chinensis and the mechanism[D].Qingdao:Ocean University of China,2010.[韦柳枝.低溶解氧对中国明对虾生长的影响及其机制的实验研究[D].青岛:中国海洋大学,2010.]
    [5]Wang H T,Zhang P J.Effects of environmental conditions on fertilized eggs and early larva of marine fishes[J].Marine Sciences,1998,4(1):50-52.[王宏田,张培军.环境因子对海产鱼类受精卵及早期仔鱼发育的影响[J].海洋科学,1998,4(1):50-52.]
    [6]Siikavuopio S I,Dale T,Mortensen A,et al.Effects of hypoxia on feed intake and gonad growth in the green sea urchin,Strongylocentrotus droebachiensis[J].Aquaculture,2007,266(1):112-116.
    [7]Shang E H,Yu R M,Wu R S.Hypoxia affects sex differentiation and development,leading to a male-dominated population in zebrafish(Danio rerio)[J].Environmental Science&Technology,2006,40(9):3118-3122.
    [8]Zhao W W,Cao Z D,Fu S J.The effects of dissolved oxygen level on the swimming performances of juvenile Parabramis pekinensis and Spinibarbus sinensis[J].Acta Hydrobiologica Sinica,2013,37(2):314-320.[赵文文,曹振东,付世建.溶氧水平对鳊鱼、中华倒刺鲃幼鱼游泳能力的影响[J].水生生物学报,2013,37(2):314-320.]
    [9]Wu R S,Lam P K,Wan K L.Tolerance to,and avoidance of,hypoxia by the penaeid shrimp(Metapenaeus ensis)[J].Environ Pollut,2002,118(3):351-355.
    [10]Bell G,Eggleston D,Wolcott T.Behavioral responses of free-ranging blue crabs to episodic hypoxia.I.Movement[J].Marine Ecology-Progress Series,2003,259:215-225.
    [11]Zhang W B,LV Z B,Zhang Y,et al.Influence of hypoxia stress on physiological metabolism of Ruditapes philippinarum[J].Chinese Journal of Ecology,2014,33(9):2448-2453.[张文斌,吕振波,张莹,等.缺氧胁迫对菲律宾蛤仔(Ruditapes philippinarum)生理代谢的影响[J].生态学杂志,2014,33(9):2448-2453.]
    [12]Xu H J,Ling Q F,Li Q,et al.Initial research of oxygen consumption rate of six freshwater shellfishes[J].Journal of Aquaculture,2010,31(1):1-4.[徐海军,凌去非,李倩,等.六种淡水贝类耗氧率的初步研究[J].水产养殖,2010,31(1):1-4.]
    [13]Wu Z H,You F,Wang Y F,et al.The effects of hypoxia and hyperoxia on nucleus anomaly,SOD,CAT activities and MDA content in juvenile turbot Scophthalmus maximus[J].Journal of Shanghai Ocean University,2011,20(6):808-813.[吴志昊,尤锋,王英芳,等.低氧和高氧对大菱鲆幼鱼红细胞核异常及氧化抗氧化平衡的影响[J].上海海洋大学学报,2011,20(6):808-813.]
    [14]Parrilla-Taylor D P,Zenteno-Savín T.Antioxidant enzyme activities in Pacific white shrimp(Litopenaeus vannamei)in response to environmental hypoxia and reoxygenation[J].Aquaculture,2011,318(3):379-383.
    [15]Qian Y.Experimental studies on different dissolved oxygen levels and exposure in air under different temperature in sea cucumber,Apostichopus japonicus[D].Qingdao:Ocean University of China:2011.[钱圆.刺参对不同溶氧水平和干露的生理生态学响应及其机理研究[D].青岛:中国海洋大学:2011.]
    [16]Zheng H,Li B,Rong X J,et al.Effects of salinity and dissolved oxygen variation on the non-specific immune response of sea cucumber Apostichopus japonicus[J].Progress in Fishery Sciences,2014,35(1):118-124.[郑慧,李彬,荣小军,等.盐度和溶解氧对刺参非特异性免疫酶活性的影响[J].渔业科学进展,2014,35(1):118-124.]
    [17]Li G R,Ren L H,Sun G H,et al.Effects of hypoxic stress on oxidative stress indices in sea cucumber Apostichopus japonicas[J].Progress in Fishery Sciences,2016,37(5):133-139.[李根瑞,任利华,孙国华,等.低溶氧胁迫对刺参(Apostichopus japonicus)氧化应激指标的影响[J].渔业科学进展,2016,37(5):133-139.]
    [18]Lei Y Z.Chemistry Experiments on Aquaculture Water Environment[M].Beijing:China Agriculture Press,2006.[雷衍之.养殖水环境化学实验[M].北京:中国农业出版社,2006.]
    [19]Bao J,Jiang H B,Dong S L,et al.Comparison of oxygen consumption rate and ammonia-N excretion rate between green type and red type sea cucumber Apostichopus japonicus[J].Journal of Fisheries of China,2013,37(11):1689-1696.[包杰,姜宏波,董双林,等.红刺参和青刺参耗氧率与排氨率的比较研究[J].水产学报,2013,37(11):1689-1696.]
    [20]Zhang Y R,Du Q C,Wang Y M,et al.Effects of TDG supersaturated water with sediment on juvenile Schizothorax prenanti[J].Journal of Hydraulic Engineering,2014,45(9):1029-1037.[张亦然,杜秋成,王远铭,等.总溶解气体过饱和含沙水体对齐口裂腹鱼影响的实验研究[J].水利学报,2014,45(9):1029-1037.]
    [21]Xu J B,Li Z H,Li S.Based on time-response approach to evaluate the median lethal time[J].Journal of Northeast Normal University(Natural Science Edition),2014,46(1):135-138.[徐镜波,李铸衡,李爽.基于时间-反应法评估半数死亡时间[J].东北师大学报:自然科学版,2014,46(1):135-138.]
    [22]Cao Z D,Xie X J.Effects of temperature on the time of halfmortality,body weight and length in the southern catfish,Silurus meridionalis,at starvation[J].Journal of Southwest Normal University(Natural Science),2002,27(5):746-750.[曹振东,谢小军.温度对南方鲇饥饿仔鱼的半致死时间及其体重和体长变化的影响[J].西南师范大学学报:自然科学版,2002,27(5):746-750.]
    [23]Wang X Z,Xing X Z.A study on the status and technique of Stichopus japonicus Selenka in north of China[J].Modern Fisheries Information,2000,15(8):20-22.[王兴章,邢信泽.中国北方刺参(Stichopus japonicus Selenka)增养殖发展现状及技术探讨[J].现代渔业信息,2000,15(8):20-22.]
    [24]Li Q,Luo Y C,Li H,et al.Acute toxicity of common antibiotics and disinfectants to juvenile sea cucumber(Apostichopus japonicus)[J].Journal of Dalian Fisheries College,2005,20(2):105-110.[李强,罗永成,李华,等.常用抗菌药物和消毒剂对刺参幼体的急性毒性试验[J].大连水产学院学报,2005,20(2):105-110.]
    [25]Eerkes-Medrano D,Menge B,Sislak C,et al.Contrasting effects of hypoxic conditions on survivorship of planktonic larvae of rocky intertidal invertebrates[J].Marine EcologyProgress Series,2013,478:139-151.
    [26]Breitburg D L.Behavioral response of fish larvae to low dissolved oxygen concentrations in a stratified water column[J].Marine Biology,1994,120(4):615-625.
    [27]Shick J M.Physiological and behavioral responses to hypoxia and hydrogen sulfide in the infaunal asteroid Ctenodiscus crispatus[J].Marine Biology,1976,37(3):279-289.
    [28]Vaquer-Sunyer R,Duarte C M.Thresholds of hypoxia for marine biodiversity[J].Proceedings of the National Academy of Science of the United States of America,2008,105(40):15452-15457.
    [29]Yang H,Zhou Y,Zhang T,et al.Metabolic characteristics of sea cucumber Apostichopus japonicus(Selenka)during aestivation[J].Journal of Experimental Marine Biology and Ecology,2006,330(2):505-510.
    [30]Dong G C.Effects and mechanism of light and artificial shelter on behavior and growth of sea cucumber,Apostichopus japonicus[D].Qingdao:Ocean University of China,2009.[董贯仓.光照及投礁方式对刺参(Apostichopus japonicus)行为、生长的影响及其机制[D].青岛:中国海洋大学,2009.]
    [31]Wang X G.The effects of environment factors on behavior and growth of sea cucumber Apostichopus japonicus[D].Jinan:Shandong University:2013.[王学广.环境因子对刺参行为及生长影响的研究[D].济南:山东大学:2013.]
    [32]Sturdivant S K,Perchik M,Brill R W,et al.Metabolic responses of the Nereid polychaete,Alitta succinea,to hypoxia at two different temperatures[J].Journal of Experimental Marine Biology and Ecology 2015,473:161-168.
    [33]Bao J,Jiang H B,Tian X L,et al.Effects of temperature and salinity on oxygen consumption rate and ammonia-N excretion rate of red sea cucumber Apostichopus japonicus(Selenka)[J].Progress in Fishery Sciences,2015,36(4):116-121.[包杰,姜宏波,田相利,等.温度和盐度对红刺参(Apostichopus japonicus)耗氧率与排氨率的影响[J].渔业科学进展,2015,36(4):116-121.]
    [34]Wang J Q,Tian X L.New Progress of Aquaculture Biology in Sea Cucumber Apostichopus japonicus[M].Beijing:Ocean Press,2012.[王吉桥,田相利.刺参养殖生物学新进展[M].北京:海洋出版社,2012.]
    [35]Chang Y Q,Ding J,Song J,et al.The Biology Research and Cultivation of Sea Cucumber and Sea Urchins[M].Beijing:Ocean Press,2004.[常亚青,丁君,宋坚,等.海参、海胆生物学研究与养殖[M].北京:海洋出版社,2004.]
    [36]Dong Y W,Dong S L.Advances of ecological physiology in sea cucumber,Apostichopus japonicus Selenka[J].Periodical of Ocean University of China,2009,39(5):908-912.[董云伟,董双林.刺参对温度适应的生理生态学研究进展[J].中国海洋大学学报,2009,39(5):908-912.]
    [37]Li F X,Liu Y H,Song B X,et al.Study on aestivating habit of sea cucumber(Apostichopus japonicus Selenka)Ⅱ.The factors relating to aestivation[J].Journal of Fishery Sciences of China,1996,3(2):49-57.[李馥馨,刘永宏,宋本祥,等.刺参(Apostichopus japonicus Selenka)夏眠习性研究Ⅱ—夏眠致因的探讨[J].中国水产科学,1996,3(2):49-57.]
    [38]Guan Y Q,Li L,Wang H C,et al.Effects of hypoxia on respiratory metabolism and antioxidant capability of Macrobrachium nipponense[J].Journal of Hebei University(Natural Science Edition),2010,30(3):301-306.[管越强,李利,王慧春,等.低氧胁迫对日本沼虾呼吸代谢和抗氧化能力的影响[J].河北大学学报:自然科学版,2010,30(3):301-306.]
    [39]Parrilla-Taylor D P,Zenteno-Savín T.Antioxidant enzyme activities in Pacific white shrimp(Litopenaeus vannamei)in response to environmental hypoxia and reoxygenation[J].Aquaculture,2011,318(3):379-383.
    [40]de Oliveira U O,da Rosa Araújo A S,Belló-Klein A,et al.Effects of environmental anoxia and different periods of reoxygenation on oxidative balance in gills of the estuarine crab Chasmagnathus granulata[J].Comparative Biochemistry and Physiology B,2005,140(1):51-57.
    [41]Zhao J H,Yang D G,Chen J W,et al.Research and application on the biology of fish stress[J].Chinese Bulletin of Life Sciences,2011,23(4):394-401.[赵建华,杨德国,陈建武,等.鱼类应激生物学研究与应用[J].生命科学,2011,23(4):394-401.]
    [42]Davis K B,Griffin B R,Gray W L.Effect of handling stress on susceptibility of channel catfish Ictalurus punctatus to Ichthyophthirius multifiliis and channel catfish virus infection[J].Aquaculture,2002,214(1):55-66.
    [43]Wang W B,Wang J G,Li A H,et al.Changes of cortisol and lysozyme levels in Carassius auratus blood after handling stress[J].Acta Hydrobiologica Sinica,2004,28(6):682-684.[王文博,汪建国,李爱华,等.振荡胁迫后鲫血液皮质醇和溶菌酶水平的变化[J].水生生物学报,2004,28(6):682-684.]
    [44]Tomasso J R,Davis K B,Parker N C.Plasma corticosteroid dynamics in channel catfish,Ictalurus punctatus(Rafinesque),during and after oxygen depletion[J].Journal of Fish Biology,1981,18(5):519-526.
    [45]Pei S,Dong S,Wang F,et al.Effects of density on variation in individual growth and differentiation in endocrine response of Japanese sea cucumber(Apostichopus japonicus Selenka)[J].Aquaculture,2012,356:398-403.
    [46]Ren S X.Invertebrate Zoology[M].Beijing:Beijing University Press,2007.[任淑贤.无脊椎动物学[M].北京:北京大学出版社,2007.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700