用户名: 密码: 验证码:
基于高精度卫星重力数据反演青藏高原莫霍面深度
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Inversion of Moho Depth in Tibetan Plateau Based on High-precision Satellite Gravity Data
  • 作者:史庆斌 ; 胡双贵 ; 杨磊
  • 英文作者:Shi Qingbin;Hu Shuanggui;Yang Lei;School of Geosciences and Info-physics,Central South University;The Key Laboratory of Metallogenic Prediction of Nonferrous Metals of Ministry of Education,Central South University;The Key Laboratory of Non-Ferrous Resources and Geological Hazard Detection;
  • 关键词:卫星重力 ; EIGEN-6C4 ; 低通滤波 ; 小波分析 ; 青藏高原 ; 莫霍面
  • 英文关键词:satellite gravity;;EIGEN-6C4;;low-pass filtering;;wavelet analysis;;Tibetan Plateau;;Moho surface
  • 中文刊名:GCDQ
  • 英文刊名:Chinese Journal of Engineering Geophysics
  • 机构:中南大学地球科学与信息物理学院;中南大学有色金属成矿预测与地质环境监测教育部重点实验室;中南大学有色资源与地质灾害探查湖南省重点实验室;
  • 出版日期:2018-07-30
  • 出版单位:工程地球物理学报
  • 年:2018
  • 期:v.15
  • 基金:国家科技重大专项(编号:2016ZX05027002)
  • 语种:中文;
  • 页:GCDQ201804011
  • 页数:9
  • CN:04
  • ISSN:42-1694/TV
  • 分类号:74-82
摘要
高精度的卫星重力数据被广泛应用于大规模的区域重力反演,利用高阶次的卫星重力场模型获得高精度的重力数据并且用于反演的过程仍然存在许多分歧。首先使用基于扩程算法的标准向前列推法利用EIGEN-6C4地球重力场模型计算了高精度的布格重力异常数据,并且利用径向功率谱方法估计了低通滤波和小波分析方法得到的区域重力异常的场源深度,然后基于Parker—Oldenburg反演迭代公式,对比分析了利用低通滤波和小波四阶逼近方法所获得的区域重力异常的莫霍面反演效果,并且通过地震资料验证了小波分析方法反演结果的可靠性;最后对青藏高原莫霍面的深度特征按照构造分块进行了简要的分析,证明了卫星重力数据的有效性,提高了青藏高原莫霍面深度反演结果的可靠性。
        High-precision satellite gravity data are widely used in large-scale regional gravity inversion.High-order satellite gravity field models are used to obtain high-preci-sion gravity data and there are still many differences in the inversion process.In this paper,the standard forward-column method based on extended-range algorithm is used to calculate high-precision Bouguer gravity anomaly data by using the EIGEN-6 C4 earth gravity field model,and the low-pass filtering and wavelet analysis methods are used to estimate the radial power spectrum method.Based on the field source depth of regional gravity anomalies,and then based on the Parker-Oldenburg inversion iterative formula,the Moho surface inversion effects of regional gravity anomalies obtained by low-pass filtering and wavelet fourth-order approximation methods are compared and verified by seismic data.The reliability of the inversion results of the wavelet analysis method is analyzed.Finally,the depth characteristics of the Moho surface in the Tibetan Plateau are analyzed briefly in terms of tectonic blocks,which proves the validity of satellite gravity data and improves the depth of the Moho surface inversion in the Tibetan Plateau.
引文
[1]冯志民.1∶20万区域重力资料二次开发在宁夏煤田预测中的作用[J].工程地球物理学报,2015,12(6):760-765.
    [2]李凤廷,孟军海,苗虎林,等.高精度重力测量中城市建筑物的影响及其校正[J].工程地球物理学报,2015,12(5):686-691.
    [3]张爽,唐振,李禄,等.利用重力异常和垂向一阶导数的特征点求水平圆柱体中心埋深[J].工程地球物理学报,2017,14(6):710-715.
    [4]Schwintzer P,Reigber C,Bode A,et al.Long-wavelength global gravity field models:GRIM4-S4,GRIM4-C4[J].Journal of Geodesy,1997,71(4):189-208.
    [5]T Mayer-Gürr,K H Ilk,A Eicker,et al.ITGCHAMP01:a CHAMP gravity field model from short kinematic arcs over a one-year observation period[J].Journal of Geodesy,2005,78(7-8):462-480.
    [6]Pail R,Bruinsma S,Migliaccio F,et al.First GOCE gravity field models derived by three different approaches[J].Journal of Geodesy,2011,85(11):819-843.
    [7]Bruinsma S L,F9rste C,Abrikosov O,et al.The new ESA satellite‐only gravity field model via the direct approach[J].Geophysical Research Letters,2013,40(14):3 607-3 612.
    [8]Hirt C,Rexer M,Scheinert M,et al.A new degree-2190(10km resolution)gravity field model for Antarctica developed from GRACE,GOCE and Bedmap2data[J].Journal of Geodesy,2016,90(2):105-127.
    [9]Hofmann-Wellenhof B,Moritz H.Physical Geodesy[M].2005.
    [10]Holmes S A,Featherstone W E.A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions[J].Journal of Geodesy,2002,76(5):279-299.
    [11]吴星,刘雁雨.多种超高阶次缔合勒让德函数计算方法的比较[J].测绘科学技术学报,2006,23(3):188-191.
    [12]刘缵武,刘世晗,黄欧.超高阶次勒让德函数递推计算中的压缩因子和Horner求和技术[J].测绘学报,2011,40(4):454-458.
    [13]Fukushima T.Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers:III integral[J].Journal of Geodesy,2012,86(11):1 019-1 028.
    [14]曾华霖.重力场与重力勘探[M].北京:地质出版社,2005.
    [15]Parker R L.The Rapid Calculation of Potential Anomalies[J].Geophys.j.astron.soc,1973,31(4):447-455.
    [16]Oldenburg D W.The inversion and interpretation of gravity anomalies[J].Geophysics,1974,39(4):526-536.
    [17]关小平.利用Parker公式反演界面的一种有效方法[J].物探化探计算技术,1991,13(3):236-242.
    [18]Nagendra R,Prasad P V S,Bhimasankaram V L S.Forward and inverse computer modeling of a gravity field resulting from a density interface using Parker-Oldenberg method[J].Computers&Geosciences,1996,22(3):227-237.
    [19]Gómez-Ortiz D,Agarwal B N P.3DINVER.M:a MATLAB program to invert the gravity anomaly over a 3Dhorizontal density interface by Parker–Oldenburg's algorithm[J].Computers&Geosciences,2005,31(4):513-520.
    [20]肖鹏飞,陈生昌,孟令顺,等.高精度重力资料的密度界面反演[J].物探与化探,2007,31(1):29-33.
    [21]张冲,吴国超,宋立成,等.重力界面反演改进算法的比较与应用[J].世界地质,2015,34(3):819-824.
    [22]卢鹏羽,马国庆,LU Peng-yu,等.基于重力全张量数据的Parker—Oldenburg算法研究[J].世界地质,2016,35(1):216-222.
    [23]郭俊义.物理大地测量学基础[M].西安:西安交通大学出版社,1994.
    [24]Spector A,Grant F S.Statistical models for interpreting aeromagnetic data[J].Geophysics,1970,35(2):293-302.
    [25]高锐,熊小松,李秋生,等.由地震探测揭示的青藏高原莫霍面深度[J].地球学报,2009,30(6):761-773.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700