用户名: 密码: 验证码:
全球降水计划多卫星降水联合反演IMERG卫星降水产品在中国大陆地区的多尺度精度评估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of the Integrated Multi-satellitE Retrievals (IMERG) for Global Precipitation Measurement (GPM) mission over the Mainland China at multiple scales
  • 作者:任英杰 ; 雍斌 ; 鹿德凯 ; 陈汉清
  • 英文作者:REN Yingjie;YONG Bin;LU Dekai;CHEN Hanqing;State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering;School of Earth Sciences and Engineering,Hohai University;
  • 关键词:IMERG ; 卫星降水 ; 中国大陆地区 ; 精度评估 ; 高估 ; 高雨强事件 ; 校正算法
  • 英文关键词:IMERG;;satellite precipitation;;Mainland China;;accuracy evaluation;;overestimate;;heavy rainfall events;;correction algorithm
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:河海大学水文水资源与水利工程科学国家重点实验室;河海大学地球科学与工程学院;
  • 出版日期:2019-03-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:v.31
  • 基金:国家重点基础研究发展计划项目(2018YFA0605402);; 国家自然科学基金项目(91547101);; 江苏省面上基金项目(BK20161502)联合资助
  • 语种:中文;
  • 页:FLKX201902024
  • 页数:13
  • CN:02
  • ISSN:32-1331/P
  • 分类号:258-270
摘要
以中国气象局逐小时地面降水数据集为参考基准,采用8种统计评价指标综合评估对比了美国NASA研发的全球降水计划(GPM)多卫星降水联合反演IMERG(Integrated Multi-satellitE Retrievals for GPM)卫星降水产品的三个不同版本的Final数据,分析了三套卫星降水在中国大陆地区多时空尺度下的反演精度,探讨了IMERG最新版本V5数据的改进情况及反演中仍然存在的问题.结果表明:IMERG数据能够准确地捕捉到中国大陆地区的降水区域特征,但是在中国西北部地面站点稀疏地区误差较大,精度较低,难以精确估测该地区的实际降水值.最新版本V5数据精度整体上优于先前的V3和V4数据,V5与地面观测数据的相关系数为0.75,均方根误差为7.03 mm/d,较V3、V4有明显提高,改善了V3、V4在中国西北部出现的降水低估问题;但是V5在冬季表现较差且没有解决前期版本存在的高估问题,整体上相对实际降水仍处于高估状态;同时V5在对高雨强事件的捕捉监测能力方面还存在一定的不足,因此建议在强降雨事件监测中需谨慎使用卫星降水IMERG数据集.目前V5系统中的校正算法还存在部分缺陷:为消除全球降水系统性低估问题,目前的校正算法整体性抬升了卫星降水值,从而导致卫星降水反演在中国地区高雨强事件下出现高误报以及高估问题,进而影响到IMERG数据回推以及后续再生数据的精度.
        Based on the hourly gauge precipitation data from the China Meteorological Administration,we used eight statistical metrics to evaluate the accuracy of the Final data from three IMERG( Integrated Multi-satellitE Retrievals for GPM) versions( i.e.,Versions 3,4 and 5) over Mainland China across multiple scales. We quantified the improvement of the latest Version 5 relative to previous versions and analyzed the problems in the current IMERG algorithm. Our result shows that: The IMERG data can well capture regional precipitation characteristics over Mainland China,but in northwest China where ground stations are sparse the error is larger and the accuracy is lower,making it difficult to estimate actual precipitation. The Versions 5 outperforms the Versions 3 and 4,with a higher correlation coefficient of 0.75 and a lower root mean squared error of 7.03 mm/d. Though partly corrected for the underestimate problem in northwest China,the Version 5 still performs poorly in winter and does not handle the overestimate problem. This latest version generally surfers from overestimate problems,and the ability to capturing and monitoring heavy rainfall events is less satisfying,and therefore cautions should be taken for the cases of heavy rainfall events. The correction algorithm is still imperfect,in particular for the historical data. Meanwhile,the algorithm may upraise satellite precipitation values in excess as a result of the correction for underestimate problems,leading to high false alarm rates and overestimate problems in the cases of heavy rainfall events. This has an impact on the quality of IMERG data that retrospect to TRMM( Tropical Rainfall Measuring Mission)times and also the follow-on data.
引文
[1]Yong B,Liu D,Gourley JJ et al.Global view of real-time TRMM multisatellite precipitation analysis:Implications for its successor global precipitation measurement mission.Bulletin of the American Meteorological Society,2015,96(2):283-296.DOI:10.1175/BAMS-D-14-00017.1.
    [2]Allen MR,Ingram WJ.Constraints on future changes in climate and the hydrologic cycle.Nature,2012,419(6903):224-232.DOI:10.1038/nature11456.
    [3]Tang G,Ma Y,Long D et al.Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales.Journal of Hydrology,2016,533:152-167.DOI:10.1016/j.jhydrol.2015.12.008.
    [4]Huffman GJ,Adler RF,Arkin P et al.The Global Precipitation Climatology Project(GPCP)combined precipitation dataset.Bulletin of the American Meteorological Society,1997,78(1):5-20.DOI:10.1175/1520-0477(1997)078<0005:TG-PCPG>2.0.CO;2.
    [5]Shen Y,Pan Y,Yu JJ.Quality assessment of hourly merged precipitation product over China.Trans Atmos Sci,2013,36(1):37-46.[沈艳,潘旸,宇婧婧等.中国区域小时降水量融合产品的质量评估.大气科学学报,2013,36(1):37-46.]
    [6]Huffman GJ,Adler RF,Morrissey MM et al.Global precipitation at one-degree daily resolution from multisatellite observations.Journal of Hydrometeorology,2000,2(1):36-50.DOI:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.
    [7]Huffman GA,Adler R,Bolvin DT et al.The TRMM multi-satellite precipitation analysis(TMPA):quasi-global,multiyear,combined-sensor precipitation estimates at fine scale.Journal of Hydrology,2007,1(8):38-55.DOI:10.1175/JHM560.1.
    [8]Rosenfeld D.TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall.Geophysical Research Letters,1999,26(20):3105-3108.DOI:10.1029/1999GL006066.
    [9]Liu YB,Fu QN,Song P.Satellite retrieval of precipitation:An overview.Advances in Earth Science,2011,(11):1162-1172.[刘元波,傅巧妮,宋平等.卫星遥感反演降水研究综述.地球科学进展,2011,(11):1162-1172.]
    [10]Joyce RJ,Janowiak JE,Arkin PA et al.CMORPH:A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution.Journal of Hydrometeorology,2004,5(3):287-296.DOI:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.
    [11]Hong Y,Hsu K,Sorooshian S.Precipitation estimation from remotely sensed information using ANN-Cloud Classification System.Journal of Applied Meteorology,1996,36(9):1176-1190.
    [12]Mccollum JR,Krajewski WF,Ferraro RR et al.Evaluation of biases of satellite rainfall estimation algorithms over the continental United States.J Appl Meteor,2002,41:1065-1080.DOI:10.1175/1520-0450(2002)041<1065:EOBOSR>2.0.CO;2.
    [13]Gebremichael M,Krajewski WF.Characterization of the temporal sampling error in space-time-averaged rainfall estimates from satellites.Journal of Geophysical Research Atmospheres,2004,109(D11):D1110.DOI:10.1029/2004JD004509.
    [14]Liu Z.Comparison of versions 6 and 7 3-hourly TRMM multi-satellite precipitation analysis(TMPA)research products.Atmospheric Research,2015,163:91-101.DOI:10.1016/j.atmosres.2014.12.015.
    [15]Liu JF,Chen RS,Han CT et al.Evaluating TRMM multi-satellite precipitation analysis using gauge precipitation and MO-DIS snow-cover products.Adv Water Sci,2010,21(3):343-348.[刘俊峰,陈仁升,韩春坛等.多卫星遥感降水数据精度评价.水科学进展,2010,21(3):343-348.]
    [16]Su F,Hong Y,Lettenmaier DP.Evaluation of TRMM Multisatellite Precipitation Analysis(TMPA)andits utility in hydrologic prediction in the La Plata Basin.Journal of Hydrometeorology,2008,9(4):622-640.DOI:10.1175/2007JHM944.1.
    [17]Zeng H,Lijuan LI,Jiuyi LI.The evaluation of TRMM Multisatellite Precipitation Analysis(TMPA)in drought monitoring in the Lancang River Basin.Journal of Geographical Sciences,2012,22(2):273-282.DOI:10.1007/s11442-012-0926-1.
    [18]Bitew MM,Gebremichael M.Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands.Hydrology&Earth System Sciences,2011,15(4):1147-1155.DOI:10.5194/hess-15-1147-2011.
    [19]Hou AY,Kakar RK,Neeck S et al.The global precipitation measurement mission.Bulletin of the American Meteorological Society,2014,95(5):701-722.DOI:10.1175/BAMS-D-13-00164.1.
    [20]Huffman GJ,Bolvin DT,Braithwaite D et al.Developing the integrated multi-satellite retrievals for GPM(IMERG).Acta Paulista de Enfermagem,2012,25(1):146-150.
    [21]Huffman GJ,Bolvin DT,Nelkin EJ.Integrated Multi-satellitE Retrievals for GPM(IMERG)technical documentation.NASA,2018.
    [22]Sharifi E,Steinacker R,Saghafian B.Assessment of GPM-IMERG and other precipitation products against Gauge Data under different topographic and climatic conditions in Iran:Preliminary results.Remote Sensing,2016,8(2):135.DOI:10.3390/rs8020135.
    [23]Liu Z.Comparison of Integrated Multisatellite Retrievals for GPM(IMERG)and TRMM Multisatellite Precipitation Analysis(TMPA)Monthly Precipitation Products:Initial Results.Journal of Hydrometeorology,2016,17(3):777-790.DOI:10.1175/JHM-D-15-0068.1.
    [24]Chen F,Li X.Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China.Remote Sensing,2016,8(6):472.DOI:10.3390/rs8060472.
    [25]Siuki SK,Saghafian B,Moazami S.Comprehensive evaluation of 3-hourly TRMM and half-hourly GPM-IMERG satellite precipitation products.Taylor&Francis,Inc.,2017:558-571.
    [26]Tang G,Zeng Z,Long D et al.Statistical and hydrological comparisons between TRMM and GPM Level-3 products over a Midlatitude Basin:Is Day-1 IMERG a good successor for TMPA 3B42V7?Journal of Hydrometeorology,2015,17.DOI:10.1175/JHM-D-15-0059.1.
    [27]Liu G,Zhu ZW,Tan XH.Assessments of high resolution multi-satellite precipitation products on extreme storm event monitoring:A case study of typhoon“Rammasun”in 2014.Journal of Subtropical Resources and Environment,2017,(4):39-48.[刘国,朱自伟,谭显辉.高分辨率遥感降水产品对强降水的监测能力评估---以2014年“威马逊”台风为例.亚热带资源与环境学报,2017,(4):39-48.]
    [28]Zhao H,Yang S,You S et al.Comprehensive evaluation of two successive V3 and V4 IMERG Final Run Precipitation Products over Mainland China.Remote Sensing,2017,10(1):34.DOI:10.3390/rs10010034.
    [29]Chen XH,Zhong RD,Wang ZL et al.Evaluation on the accuracy and hydrological performance of the latest-generation GPM IMERG product over South China.J Hydraul Eng,2017,(10):1147-1156.[陈晓宏,钟睿达,王兆礼等.新一代GPM IMERG卫星遥感降水数据在中国南方地区的精度及水文效用评估.水利学报,2017,(10):1147-1156.]
    [30]Wang C,Tang G,Han Z et al.Global Intercomparison and Regional Evaluation of GPM IMERG Version-03,Version-04and its latest Version-05 precipitation products:Similarity,Difference and Improvements.Journal of Hydrology,2018,564:342-356.
    [31]Hong Y,Hsu KL,Sorooshian S et al.Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system.Journal of Applied Meteorology,1997,36(9):1176-1190.
    [32]Schneider U,Fuchs T,Meyer-Christoffer A et al.Global precipitation analysis products of the GPCC.Dtsch Wetterdienst,2005.
    [33]Aonashi K,Liu G,Awaka J et al.GSMaP passive microwave precipitation retrieval algorithm:Algorithm description and validation.Journal of the Meteorological Society of Japan,2009,87A(3):119-136.DOI:10.2151/jmsj.87A.119.
    [34]Shen Y,Feng MN,Zhang HZ et al.Interpolation methods of china daily precipitation data.Journal of Applied Meteorological Science,2010,21(3):279-286.[沈艳,冯明农,张洪政等.我国逐日降水量格点化方法.应用气象学报,2010,21(3):279-286.]
    [35]Yong B,Ren LL,Hong Y et al.Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band:A case study in Laohahe basin,China.Water Resources Research,2010,46(7):759-768.DOI:10.1029/2009WR008965.
    [36]Yong B,Chen B,Gourley JJ et al.Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks:Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes?Journal of Hydrology,2014,508:77-87.DOI:10.1016/j.jhydrol.2013.10.050.
    [37]Demaria EMC,Rodriguez DA,Ebert EE et al.Evaluation of mesoscale convective systems in South America using multiple satellite products and an object-based approach.Journal of Geophysical Research Atmospheres,2011,116(D8).
    [38]Tang G,Behrangi A,Long D et al.Accounting for spatiotemporal errors of gauges:A critical step to evaluate gridded precipitation products.Journal of Hydrology,2018,559.
    [39]Ma Y,Tang G,Long D et al.Similarity and error intercomparison of the GPM and Its Predecessor-TRMM Multisatellite Precipitation Analysis using the best available hourly gauge network over the Tibetan Plateau.Remote Sensing,2016,8(7):569.DOI:10.3390/rs8070569.
    [40]Tang G,Long D,Hong Y.Systematic anomalies over inland water bodies of High Mountain Asia in TRMM precipitation estimates:No longer a problem for the GPM era?AGU Fall Meeting,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700