用户名: 密码: 验证码:
HN-AD菌生物强化接触氧化工艺处理猪场沼液
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Treatment of Piggery Biogas Slurry by Enhanced Biological Contact Oxidation with HN-AD Bacteria
  • 作者:刘向阳 ; 张千 ; 吴恒 ; 李宸 ; 唐健泓 ; 封丽 ; 肖芃颖 ; 赵天涛
  • 英文作者:LIU Xiang-yang;ZHANG Qian;WU Heng;LI Chen;TANG Jian-hong;FENG Li;XIAO Peng-ying;ZHAO Tian-tao;School of Chemical Engineering,Chongqing University of Technology;Chongqing Academy of Environmental Science;
  • 关键词:HN-AD菌剂 ; 生物强化 ; 生物接触氧化(BCO)工艺 ; 猪场沼液 ; 微生物群落结构
  • 英文关键词:HN-AD agent;;biological enhancement;;biological contact oxidation(BCO) process;;piggery biogas slurry;;microbial community structure
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:重庆理工大学化学化工学院;重庆市环境科学研究院;
  • 出版日期:2018-12-20 07:04
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51708077);; 重庆市社会事业与民生保障科技创新专项(cstc2018jscx-msybX0134)
  • 语种:中文;
  • 页:HJKZ201905043
  • 页数:8
  • CN:05
  • ISSN:11-1895/X
  • 分类号:353-360
摘要
针对养猪废水采用传统工艺经厌氧发酵处理后,形成高氨氮低碳氮比沼液,导致脱氮效果差、工艺流程复杂、启动周期较长等问题.本研究以异养硝化-好氧反硝化(HN-AD)菌为生物强化剂,以PAN活性炭纤维作为填料的生物接触氧化池(BCO)为生物膜反应器,形成生物强化BCO工艺处理猪场沼液.前期污泥驯化阶段发现,NH_4~+-N浓度高于500 mg·L~(-1)时,污染物去除率明显降低,经HN-AD菌剂生物强化后,耐受NH_4~+-N浓度可高于600 mg·L~(-1)且能保持污染物的高效去除.采用HN-AD生物强化的BCO工艺处理真实猪场沼液,对NH4+-N、TN和COD的平均去除率分别为86. 9%、70. 5%和74. 4%,分别高于传统处理工艺的57. 6%、50. 3%和50. 0%,出水浓度均低于相关污染物排放标准.采用高通量测序技术研究了功能菌富集过程中微生物群落结构的变化规律,结果表明,生物膜内属于HN-AD菌的优势菌由Alcaligenes这一种菌属增加为生物强化后的Diaphorobacter、Acinetobacter和Thauera等多种菌属,且Acinetobacter菌属的相对丰度明显高于接种菌剂.扫描电子显微镜结果也进一步证实了生物强化的存在,紧密附着在填料上的生物膜层表面富集了以杆状和球状为主的HN-AD功能菌.
        The conventional pretreatment process for swine wastewater is anaerobic fermentation. This process leads to the formation of high ammonia nitrogen,low carbon,and piggery biogas slurry,which usually results in poor denitrification effect,complicated process flow,and long startup period for the subsequent treatment process. In this study,a novel biological enhanced Biological Contact Oxidation( BCO) process using HN-AD bacteria as microbial inoculants,and PAN activated carbon fiber filler as biofilm carrier was proposed for the treatment of piggery biogas slurry. In the early stage of sludge acclimation,it was found that when NH_4~+-N concentration was higher than 500 mg·L~(-1),the nitrification and COD removal in BCO was severely inhibited. When the BCO was enhanced by HN-AD bacteria,however,the tolerance concentration of NH_4~+-N for bacteria in BCO could reach 600 mg·L~(-1) and the removal efficiency of NH_4~+-N,COD,and TN could still remain at a high level. The bio-enhanced BCO process was used to treat the piggery biogas slurry. The average removal rates of NH_4~+-N,TN,and COD were 86. 9%,70. 5%,and 74. 4%,respectively,which were higher than the 57. 6%,50. 3%,and 50. 0% of the traditional treatment process. The concentration of the pollutants mentioned above in the effluent was below the relevant discharge standards. The changes in the microbial community structure during the enrichment process of functional bacteria were studied by high-throughput sequencing technique. The results showed that the dominant bacteria belonging to HN-AD in the biofilm during the sludge acclimation process was Alcaligenes. After the addition of the HN-AD agent,however,the dominant bacteria were Diaphorobacter,Acinetobacter,and Thauer,and the relative abundance of Acinetobacter was much higher than that in the microbial inoculants. The results of scanning electron microscopy further confirmed the existence of bio-enhancement. The surface of the biofilm layer tightly attached to the filler was enriched with rod-like and globular HN-AD functional bacteria.
引文
[1]Meng J,Li J L,Li J Z,et al.Nitrogen removal from low COD/TN ratio manure-free piggery wastewater within an upflow microaerobic sludge reactor[J].Bioresource Technology,2015,198:884-890.
    [2]车建刚.臭氧/微电解耦合-生物接触氧化组合工艺处理猪场沼液的研究[D].南昌:南昌大学,2018.Che J G.Study on treatment of piggery digestate wastewater with a ozone/micro-electrolysis coupled-bio-contact oxidation combined process[D].Nanchang:Nanchang University,2018.
    [3]李文英,彭智平,于俊红,等.珠江三角洲典型集约化猪场废水污染特征及风险评价[J].环境科学,2013,34(10):3963-3968.Li W Y,Peng Z P,Yu J H,et al.Wastewater pollution characteristics from typical intensive pig farms in the pearl river delta and its ecological risk assessment[J].Environmental Science,2013,34(10):3963-3968.
    [4]Rico C,Montes J A,Rico J L.Evaluation of different types of anaerobic seed sludge for the high rate anaerobic digestion of pig slurry in UASB reactors[J].Bioresource Technology,2017,238:147-156.
    [5]何佳敏,孟佳,张永,等.温度降低对UMSR处理高氨氮低碳氮比养猪废水效能的影响[J].化工学报,2017,68(5):2074-2080.He J M,Meng J,Zhang Y,et al.Effect of lower temperature on performance of upflow microaerobic sludge reactor treating manure-free piggery wastewater with high NH+4-N and low COD/TN ratio[J].CIESC Journal,2017,68(5):2074-2080.
    [6]隋倩雯.氨吹脱与膜生物反应器组合工艺处理猪场厌氧消化液研究[D].北京:中国农业科学院,2014.Sui Q W.Combined of ammonia stripping and membrane bioreactor processes for anaerobically digested swine wastewater treatment[D].Beijing:Chinese Academy of Agricultural Sciences,2014.
    [7]聂丽君,李德豪,何京东,等.ABR-MAP-MBR组合工艺处理高浓度养殖废水研究[J].化工学报,2018,69(6):2722-2729.Nie L J,Li D H,He J D,et al.Treatment of high concentration piggery wastewater by ABR-MAP-MBR process[J].CIESCJournal,2018,69(6):2722-2729.
    [8]张强强.一种高含氮废水处理工程设计与运行[D].济南:山东大学,2017.Zhang Q Q.Design and operation of a high nitrogen containing wastewater treatment engineering[D].Ji'nan:Shandong University,2017.
    [9]曾鑫,呼世斌,屈广周,等.臭氧氧化处理养猪场厌氧沼液[J].环境工程学报,2015,9(7):3332-3338.Zeng X,Hu S B,Qu G Z,et al.Treatment of swine farm anaerobic biogas slurry by ozone oxidation[J].Chinese Journal of Environmental Engineering,2015,9(7):3332-3338.
    [10]潘碌亭,吴锦峰,罗华飞.微电解-UASB-接触氧化处理羧甲基纤维素废水[J].化工学报,2010,61(5):1275-1281.Pan L T,Wu J F,Luo H F.Microelectrolysis-UASB-contact oxidation process for treatment of carboxymethyl cellulose production wastewater[J].CIESC Journal,2010,61(5):1275-1281.
    [11]王子凌,信欣,王锣,等.CANON工艺处理猪场沼液的启动及微生物种群结构分析[J].环境科学学报,2018,38(10):3945-3953.Wang Z L,Xin X,Wang L,et al.Start-up and microbial communities analysis of CANON process for the treatment of anaerobic digester liquor of swine wastewater(ADLSW)[J].Acta Scientiae Circumstantiae,2018,38(10):3945-3953.
    [12]龚松.EGSB+生物接触氧化+MBR处理规模化猪场废水的试验研究[D].武汉:武汉科技大学,2014.Gong S.Experimental study of EGSB+bio-contact oxidation+MBR in swine wastewater treatment[D].Wuhan:Wuhan University of Science and Technology,2014.
    [13]万莉.规模化养猪场废水(沼液)BCO+SBBR好氧处理新工艺研究[D].南昌:南昌大学,2016.Wan L.Study on the new technology of BCO+SBBR aerobic treatment for scaled pig farms wastewater(Biogas slurry)[D].Nanchang:Nanchang University,2016.
    [14]赵秋菊,马兴冠,姜维.生物接触氧化工艺处理奶牛养殖废水参数优化研究[J].水处理技术,2015,41(8):115-120.Zhao Q J,Ma X G,Jiang W.Study on parameters optimization of cows breeding wastewater by biological contact oxidation process[J].Technology of Water Treatment,2015,41(8):115-120.
    [15]Zheng T L,Li P,Ma X Y,et al.Pilot-scale multi-level biological contact oxidation system on the treatment of high concentration poultry manure wastewater[J].Process Safety and Environmental Protection,2018,120:187-194.
    [16]Yang L,Ren Y X,Liang X,et al.Nitrogen removal characteristics of a heterotrophic nitrifier Acinetobacter junii YBand its potential application for the treatment of high-strength nitrogenous wastewater[J].Bioresource Technology,2015,193:227-233.
    [17]Ren Y X,Yang L,Liang X.The characteristics of a novel heterotrophic nitrifying and aerobic denitrifying bacterium,Acinetobacter junii YB[J].Bioresource Technology,2014,171:1-9.
    [18]金羽,李建政,任南琪,等.耐冷氨氧化功能菌群的富集及其对A2/O系统的生物强化[J].化工学报,2013,64(9):3367-3372.Jin Y,Li J Z,Ren N Q,et al.Domestication of a cold-adapted ammonia-oxidizing functional flora and its bioaugmentation on A2/O wastewater treatment process at low temperature[J].CIESC Journal,2013,64(9):3367-3372.
    [19]吴云,杜小磊,宋凯,等.生物接触氧化池悬浮填料流动特性数值模拟分析[J].化工学报,2018,69(7):3242-3248.Wu Y,Du X L,Song K,et al.Numerical simulation analysis of flow characteristics of suspended packing in biological contact oxidation tank[J].CIESC Journal,2018,69(7):3242-3248.
    [20]国家环境保护总局.水和废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002.
    [21]符波,廖潇逸,丁丽丽,等.环境扫描电镜对废水生物样品形态结构的表征研究[J].中国环境科学,2010,30(1):93-98.Fu B,Liao X Y,Ding L L,et al.Application of ESEM in the visualization of microbial community of granule sludge and suspended carrier biofilm[J].China Environmental Science,2010,30(1):93-98.
    [22]吴鹏,陈亚,张婷,等.基于MBR不同种泥短程硝化启动的微生物群落结构分析[J].环境科学,2018,39(10):4636-4643.Wu P,Chen Y,Zhang T,et al.Microbial community characteristics of shortcut nitrification start-up in different MBR-inoculated sludges[J].Environmental Science,2018,39(10):4636-4643.
    [23]高艳辉,赵天涛,邢志林,等.铜离子对混合菌群降解三氯乙烯的影响与机制分析[J].生物工程学报,2016,32(5):621-634.Gao Y H,Zhao T T,Xing Z L,et al.Effects of copper on biodegradation mechanism of trichloroethylene by mixed microorganisms[J].Chinese Journal of Biotechnology,2016,32(5):621-634.
    [24]宿程远,刘凡凡,钟余,等.生态高负荷土地快速渗滤系统处理猪场废水的效能及微生态[J].环境科学,2017,38(10):4271-4278.Su C Y,Liu F F,Zhong Y,et al.Efficiency and microecology of a soil infiltration system with high hydraulic loading for the treatment of swine wastewater[J].Environmental Science,2017,38(10):4271-4278.
    [25]Yang N,Zhan G Q,Li D P,et al.Performance and microbial community of a novel non-aeration-based up-flow bioelectrochemical filter(UBEF)treating real domestic wastewater[J].Chemical Engineering Journal,2018,348:271-280.
    [26]喻涌泉,黄魏魏,董建江,等.硝基还原假单胞菌吸附重金属镉的机理研究[J].中国环境科学,2017,37(6):2232-2238.Yu Y Q,Huang W W,Dong J J,et al.Study on the removal of Cd(Ⅱ)by Pseudomonas nitroreducens:biosorption characteristics and mechanism[J].China Environmental Science,2017,37(6):2232-2238.
    [27]黄翔峰,朱其玮,申昌明,等.剩余污泥超声提取液培养生物破乳菌Alcaligenes sp.S-XJ-1[J].中国环境科学,2014,34(2):424-430.Huang X F,Zhu Q W,Shen C M,et al.Cultivation of demulsifying bacteria Alcaligenes sp.S-XJ-1 using ultrasonic pretreated excess sludge[J].China Environmental Science,2014,34(2):424-430.
    [28]李亚平.入滇池河口沉积物中反硝化细菌的多样性及其脱氮性能的研究[D].昆明:云南大学,2015.Li Y P.Diversity and nitrogen removal characteristic of denitrifying bacteria in the sediments of estuary around Dianchi Lake[D].Kunming:Yunnan University,2015.
    [29]Jeong D,Cho K,Lee C H,et al.Effects of salinity on nitrification efficiency and bacterial community structure in a nitrifying osmotic membrane bioreactor[J].Process Biochemistry,2018,73:132-141.
    [30]丁阿强.生物电极脱氮及其机理研究[D].杭州:浙江大学,2018.Ding A Q.Bio-cathode denitrification technology and its mechanism[D].Hangzhou:Zhejiang University,2018.
    [31]杨婷,杨娅,刘玉香.异养硝化-好氧反硝化的研究进展[J].微生物学通报,2017,44(9):2213-2222.Yang T,Yang Y,Liu Y X.Research progress and challenges of heterotrophic nitrification-aerobic denitrification[J].Microbiology China,2017,44(9):2213-2222.
    [32]Zhang S S,Sun X B,Wang X M,et al.Bioaugmentation with Diaphorobacter polyhydroxybutyrativorans to enhance nitrate removal in a poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-supported denitrification reactor[J].Bioresource Technology,2018,263:499-507.
    [33]孙英杰,杨强,卞荣星,等.矿化垃圾生物反应器中的细菌多样性分析[J].环境工程,2016,34(3):142-146.Sun Y J,Yang Q,Bian R X,et al.Analysis on the bacterial diversity in a bioreactor for aged refuse[J].Environmental Engineering,2016,34(3):142-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700