用户名: 密码: 验证码:
基于TG-FTIR技术的猪粪与稻草混合厌氧发酵产甲烷特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of methane production by anaerobic co-digestion of pig manure and rice straw based on TG-FTIR technology
  • 作者:付尹宣 ; 夏嵩 ; 付嘉琦 ; 晏恒 ; 吴九九
  • 英文作者:FU Yinxuan;XIA Song;FU Jiaqi;YAN Heng;WU Jiujiu;Institute of Energy, Jiangxi Academy of Sciences;
  • 关键词:混合厌氧发酵 ; 甲烷 ; TG-FTIR
  • 英文关键词:co-digestion;;methane;;TG-FTIR
  • 中文刊名:STKX
  • 英文刊名:Ecological Science
  • 机构:江西省科学院能源研究所;
  • 出版日期:2018-09-15
  • 出版单位:生态科学
  • 年:2018
  • 期:v.37;No.137
  • 基金:国家自然科学基金(31700311);; 国家科技支撑计划(2014BAC04B02-4);; 江西省青年科学基金(20161BAB214181);; 江西省重点研发计划(2017BBF60025);; 江西省新能源发展专项(赣能综字[2014]248号);; 江西省科学院重大科技专项(2016-YZD1-03)
  • 语种:中文;
  • 页:STKX201805005
  • 页数:6
  • CN:05
  • ISSN:44-1215/Q
  • 分类号:36-41
摘要
采用全自动甲烷潜力测试系统(AMPTS)和热重红外联用技术(TG-FTIR),对中温(37℃)下猪粪和稻草按不同挥发性固体(VS)比例(1:0、0:1、2:1、1:1、1:2、1:3)混合发酵产甲烷特性进行分析。AMPTS测试结果表明:稻草和猪粪混合比例为1:1时,发酵协同作用最好,实际甲烷产量比理论值提高了9.78%。TG-FTIR分析表明:1:1发酵时,残渣TG总失重率为47.84%,明显低于其它实验组; DSC曲线在250—350℃和400—550℃有2个明显放热峰,且1:1时放热量最少,说明该比例下有机物消耗最多,底物利用性更好,发酵稳定性更高;FTIR分析表明发酵残渣燃烧释放气体主要为水汽、CO_2、NH_3和少量挥发酸; 200—350℃和400—550℃温区下CO_2的峰值差异说明发酵中易消化有机物大量降解,残渣中较难氧化的芳香族结构和木质纤维素比例增加,发酵稳定性提高。研究结果阐明了混合厌氧发酵技术在农业废弃物甲烷化利用中的应用潜力及TG-FTIR技术在发酵产气特性及底物稳定性分析中的作用。
        The characteristics of methane production from mesophilic co-digestion of pig manure and rice straw at different VS ratios(1:0, 0:1, 2:1, 1:1, 1:2, 1:3) were investigated by AMPTS and TG-FTIR. The results showed that the best synergistic effect of co-digestion was achieved under the mixing ratio of 1:1, with a 9.78% increases of methane yield occurred compared to the theoretical value. The TG-FTIR analysis showed that the total weight loss rate of residue was 47.84% at the mixing ratio of 1:1, and was significantly lower than other experimental groups. The DSC curves from co-digestion digestates showed two exothermic peaks at 250-350 ℃ and 400-550 ℃, respectively. The lower intensity of exothermic peak correlated with smaller amounts of organic matter undergoing oxidation, indicated that a better substrate utilization and a higher co-digestion stability were achieved under the 1:1 mixing ratio. The FTIR analysis results showed that release gas was mainly composed of water vapor, CO_2, NH_3 and a small amount of volatile acid. The difference of intensity of CO_2 peaks between temperature area of 200-350 ℃ and 400-550 ℃ indicated an obvious degradation of digestible organic matters and an increased proportion of aromatic structure and lignocellulose residue, and the co-digestion stability was improved. The results indicated the application potential of anaerobic co-digestion in methane utilization of agricultural wastes and the role of TG-FTIR technology in analyzing gas production characteristics and substrate stability.
引文
[1]刘爽.混合原料厌氧发酵产氢产甲烷技术研究[D].哈尔滨:东北农业大学,2013..
    [2]王晓娇.牲畜粪便与秸秆混合的厌氧发酵特性及工艺优化[D].陕西杨凌:西北农林科技大学,2010.
    [3]楚莉莉.不同原料及其配比厌氧发酵产气效果研究[D].陕西杨凌:西北农林科技大学,2008.
    [4]张记市,张雷,王华.城市有机生活垃圾厌氧发酵处理研究[J].生态环境,2005,14(3):321-324.
    [5]李晶宇,李文哲,张影微,等.发酵原料混合比例对高固含量厌氧发酵的影响[J].东北农业大学学报,2014,45(11):101-107.
    [6]楚莉莉,李轶冰,冯永忠,等.猪粪麦秆不同比例混合厌氧发酵特性试验[J].农业机械学报,2011,42(4):100-104.
    [7]王晓娇,杨改河,冯永忠,等.牲畜粪便与秸秆混合的厌氧发酵效果及影响因素分析[J].农业环境科学学报,2011,30(12):2594-2601.
    [8]LI Jiang,WEI Luoyu,DUAN Qihu,et al.Semi-continuous anaerobic co-digestion of dairy manure with three crop residues for biogas production[J].Bioresource Technology,2014,156(2):307-313.
    [9]GO′MEZ X,CUETOS M,GARCI′A A,et al.An evaluation of stability by thermogravimetric analysis of digestate obtained from different biowastes[J].Journal of Hazardous Materials,2007,149(1):97-105.
    [10]张彤,李伟,李文静,等.粪秆结构配比厌氧发酵中pH、VFA与产气效果的关系[J].农业环境科学学报,2010,29(12):2425-2430.
    [11]李杰,李文哲,许洪伟,等.牛粪湿法厌氧消化规律及载体影响的研究[J].农业工程学报,2007,23(3):186-191.
    [12]MOSEY F,FERMANDES X.Patterns of hydrogen in biogas from the Anaerobic-digestion of milk-sugars[J].Water Science and Technology,1989,21(4/5):187-196.
    [13]HUANG Xinlei,YUN Sining,ZHU Jiang,et al.Mesophilic anaerobic co-digester:Focusing on mixing ratios and digestate stability[J].Bioresource Technology,2016,218:62-68.
    [14]付胜涛,于水利,严晓菊,等.剩余活性污泥和厨余污泥和厨余垃圾的混合中温厌氧消化[J].环境科学,2006,27(7):1459-1463.
    [15]高健,袁海荣,邹德勋,等.鸡粪与Na OH预处理麦秸联合厌氧发酵产气性能与协同效果研究[J].2012,30(7):98-103.
    [16]SáNCHEZ-MONEDERO M,MONDINI C,NOBILI M,et al.Land application of biosolids:Soil response to different stabilization degree of the treated organic matter[J].Waste Management,2004,24(4):325-332.
    [17]周莎.麦秆醋酸预处理后与粪便混合厌氧发酵协同效应研究[D].杨凌:西北农林科技大学,2015.
    [18]GóMEZ X,CUETOS M,GARC?A A,et.al.Evaluation of digestate stability from anaerobic processes by thermogravimetric analysis[J].Thermochimica.Acta,2005,426(1):179-184.
    [19]SáNCHEZ M,GOMEZ X,BARRIOCANAL G,et al.Assessment of the stability of livestock farm wastes treated by anaerobic digestion[J].International Biodeterioration&Biodegradation,2008,62(4):421-426.
    [20]OTERO M,LOBATO A,CUETOS M.Digestion of cattle manure:Thermogravimetric kinetic analysis for the evaluation of organic matter conversion[J].Bioresource Technology,2010,102(3):3404-3410.
    [21]范海宏,王为民,李斌斌,等.利用TG-FTIR系统研究氧气浓度对污泥干化焚烧的影响[J].硅酸盐通报,2014,33(4):858-862.
    [22]彭云云,武书彬.TG-FTIR联用半纤维素的热裂解特性[J].化工进展,2009,28(8):1478-1484.
    [23]姚锡文,许开立,贾彦强,等.稻壳和稻草的热重-质谱分析及其反应动力学[J].东北大学学报(自然科学版),2016,37(3):426-430.
    [24]张彬,蒋滔,高丽.猪粪与玉米秸秆混合中温发酵产气效果[J].环境工程学报,2014,8(11):4991-4997.
    [25]侯静文,王瑞斌,孟梁.秸秆类生物质热解的热重-红外联用分析[J].实验室研究与探索,2015,34(2):4-7.
    [26]王伟,蓝煜昕,李明.TG-FTIR联用下生物质废弃物的热解特性研究[J].农业环境科学学报,2008,27(1):0380-0384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700