用户名: 密码: 验证码:
保温温度对Zr56Co28高强合金微观组织和力学性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Heat Preservation Temperature on Microstructure and Mechanical Properties of Zr56Co28 Alloy
  • 作者:原涛 ; 赵跃文
  • 英文作者:YUAN Tao;ZHAO Yuewen;Department of Mechanical Engineering, Taiyuan Institute of Technology;
  • 关键词:Zr-Co合金 ; 保温温度 ; 微观组织 ; 力学性能
  • 英文关键词:Zr-Co alloy;;heat preservation temperature;;microstructure;;mechanical properties
  • 中文刊名:SJGY
  • 英文刊名:Hot Working Technology
  • 机构:太原工业学院机械工程系;
  • 出版日期:2018-12-08 15:52
  • 出版单位:热加工工艺
  • 年:2018
  • 期:v.47;No.500
  • 语种:中文;
  • 页:SJGY201822063
  • 页数:4
  • CN:22
  • ISSN:61-1133/TG
  • 分类号:245-247+255
摘要
利用XRD、SEM、拉伸力学试验等手段,研究了不同保温温度下Zr56Co28高强合金的微观组织和力学性能。结果表明:对Zr56Co28高强合金进行较低温度保温时,B33相颗粒发生长大,颗粒外形由分散的小块状与条形相连的小块共存;随保温温度增加,颗粒发生显著细化,B33相含量降低,Zr56Co28高强合金力学性能表现出先增大后降低的变化趋势,在保温温度850℃时力学性能达到最大值,此时合金的屈服强度、抗拉强度和伸长率分别为1012 MPa、1224 MPa和8.6%。Zr56Co28高强合金断口区域存在大量解理面,并且有众多的二次裂纹出现。随着保温温度升高,延性断裂区面积降低,断口部位主要表现为延性撕裂状态。
        The microstructure and mechanical properties of Zr56Co28 high strength alloy at different holding temperature were studied by means of XRD,SEM and tensile mechanical test.The results show that,when the Zr56Co28 high-strength alloy is heated at low temperature,the phase B33 particles grow up,and the shape of particles coexists with strip connected small block shape and small dispersed block shape.With the increase of heat preservation temperature,the content of the B33phase decreases significantly.The mechanical properties of the Zr56Co28 high strength alloy shows a tendency of first increasing and then decreasing.The mechanical properties reaches the maximum at 850℃,and the yield strength,tensile strength and elongation of the alloy are 1012 MPa,1224 MPa and 8.6%,respectively.There are a lot of cleavage surfaces and many secondary cracks in the fracture area of the Zr56Co28 high strength alloy.With the increase of holding temperature,the area of ductile fracture zone to decreases,and the fracture site is mainly characterized by ductile tearing.
引文
[1]Li C J,Tan J,Wang G,et al.Enhanced strength and transformation-induced plasticity in rapidly solidified Zr-Co-(Al)alloys[J].Scripta Materials,2013,68(22):897-900.
    [2]赵荣达,朱景川,来忠红,等.低温时效对Fe-22Al合金微观组织和力学性能的影响[J].材料导报,2015,29(4):110-113.
    [3]尹杰,李谦,冷海燕.TiFe系储氢合金性能改善研究进展[J].材料导报,2016,30(10):141-147.
    [4]Jat R A,Singh R,Parida S C,et al.Determination of deuterium site occupancy in Zr-CoD3 and its role in improved durability of Zr-Co-Ni deuterides against disproportionation[J].International Journal of Hydrogen Energy,2014,39(321):5565-5669.
    [5]Romaca V V,Romaca L,Rogl P,et al.Peculiarities of thermoelectric half-heusler phase formation in Zr-Co-Sb ternary system[J].Journal of Alloys Compounds,2014,585(226):448-454.
    [6]Palit M,Arout C J,Basumatary H,et al.Microstructure and magnetic properties in as-cast and melt spun Co-Zr alloys[J]Journal of Alloys Compounds,2015,644(48):7-12.
    [7]Matsuda M,Iwamoto Y,Morizono Y,et al.Enhancement of ductility in B2-type Zr-Co-Ni alloys with deformation-induced martensite and microcrac formation[J].Intermetallics,2013,36(52):45-50.
    [8]Pauly S,Cosiba C,Gargarella P,et al.Microstructural evolution and mechanical behaviour of metastable Cu-Zr-Co alloys[J].Journal of Materials Science&Technology,2014,30(6):584-589.
    [9]LI Pei-you.Mechanical properties of the novel B2-type binary Zr-Co alloys containing the B33 phase[J].International Journal of Materials Research,2016,107(4):385-387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700