用户名: 密码: 验证码:
基于微CT技术的丁羟推进剂脱湿定量表征方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantificational Method of Dewetting Damage of HTPB Propellant Based on Micro-CT Detection
  • 作者:刘新国 ; 刘佩进 ; 强洪夫 ; 张勇
  • 英文作者:LIU Xin-guo;LIU Pei-jin;QIANG Hong-fu;ZHANG Yong;National Key Laboratory of Combustion,Flow and Thermo-Structure,Northwestern Polytechnical University;Missile Engineering College,Rocket Force University of Engineering;
  • 关键词:微CT扫描 ; 丁羟固体推进剂 ; 脱湿 ; 灰度值 ; 孔隙率 ; 定量表征
  • 英文关键词:Micro-CT;;HTPB solid propellant;;Dewetting damage;;Gray value;;Porosity;;Quantitative characterization
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:西北工业大学燃烧流动和热结构国家级重点实验室;火箭军工程大学导弹工程学院;
  • 出版日期:2019-01-29 14:19
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.263
  • 语种:中文;
  • 页:TJJS201905025
  • 页数:7
  • CN:05
  • ISSN:11-1813/V
  • 分类号:208-214
摘要
为定量表征丁羟推进剂单轴拉伸过程中的脱湿演化过程,设计了一种兼顾宏观力学性能测试与细观结构微CT表征的新型哑铃型试件,利用单轴拉伸过程中原位微CT扫描试验,获取推进剂内部平均灰度值与平均孔隙率随拉伸应变的变化规律。结果表明:随着拉伸过程应变的增加,受脱湿损伤与拉伸变形双重因素的影响,丁羟推进剂的平均灰度值逐渐下降,且下降速率呈现先增后减再增的变化趋势;平均孔隙率经历初始孔隙膨胀时的较小增幅、新增脱湿损伤时的突然增加、脱湿逐步发展时的平稳增长、以及脱湿诱发裂纹贯通时的再次突然增加等四个阶段。可见,平均灰度值和孔隙率均与丁羟推进剂的细观结构及宏观力学性能变化密切相关,两者均可定量表征丁羟推进剂脱湿损伤。相比较灰度值而言,孔隙率统计可以更有效地反映丁羟推进剂内部脱湿损伤形成与发展的演化过程,故其更适合其脱湿损失的定量表征。
        To quantitatively describe dewetting evolutionary process of HTPB propellant during uniaxial tension,a new dumbbell-shaped specimen was designed,which took into account both macro-mechanical properties testing and micro-CT scanning of meso-structure. The law of the average gray value and average porosity of HTPB propellant changed with tensile strain were obtained by in-situ micro-CT scanning tests. The results indicate that with the increase of tensile strain the average gray value of HTPB propellant decreased gradually due to the dual effects of dewetting damage and tensile deformation. The decline rate showed a trend of first increasing,then decreasing and then increasing. The average porosity underwent four stages:a small increase due to initial pore expansion,a sudden increase due to new dewetting damage,a steady increase due to progressive dewetting,and a sudden increase due to crack penetration induced by dewetting damage. It can be seen that the average gray value and porosity are closely related to the meso-structure and macroscopic mechanical properties of HTPB propellant,which can be used for quantitative characterization of its dewetting damage. Comparing with gray value,porosity statistics is more suitable for quantitative characterization of the evolutionary process of the formation and development of dewetting damage of HTPB propellant.
引文
[1]侯林法.复合固体推进剂[M].北京:中国宇航出版社,2005.
    [2]刘新国,刘佩进,强洪夫.复合固体推进剂脱湿研究进展[J].固体火箭技术,2018,41(3):313-318.
    [3] Pothon R. Particulate-Filled Polymer Composites[M].London:Longman Group Limited,2000.
    [4] Rae P J. Quasi-Static Studies of the Deformation,Strength and Failure of Polymer-Bonded Explosives[D]Cambridge:University of Cambridge,2002.
    [5] Rae P J,Palmer S J P,Goldrein H T,et al. Quasi-Static Studies of the Deformation and Failure of PBX9501[J]. Proceedings of the Royal Society, 2002,458(2025):2227-2242.
    [6]王亚平,王北海.丁羟推进剂拉伸脱湿的电子显微镜观测[J].固体火箭技术,1998,21(2):71-74.
    [7]曾甲牙.丁羟推进剂拉伸断裂行为的扫描电镜研究[J].固体火箭技术,1999,22(4):69-72.
    [8]刘著卿,李高春,王玉峰,等.应变加载历史对推进剂力学性能的影响[J].火炸药学报,2010,33(4):5-9.
    [9]陈煜,刘云飞,谭惠民. NEPE推进剂的细观力学性能研究[J].火炸药学报,2008,31(1):56-59.
    [10]常武军,鞠玉涛,王蓬勃. HTPB推进剂脱湿与力学性能的相关性研究[J].兵工学报,2012,33(3):261-266.
    [11]彭威,周建平,赵维昌,等.复合固体推进剂应力分布的数值模拟及损伤萌生分析[J].固体火箭技术,2002,25(1):12-15.
    [12]龚建良,刘佩进,李强.基于能量守恒的复合固体推进剂粘弹性本构关系[J].固体火箭技术,2013,36(4):529-533.
    [13]宋丹平.固体推进剂细观力学与本构关系研究[D].武汉:武汉理工大学,2008.
    [14]王哲君,强洪夫,王广,等.低温高应变率条件下HTPB推进剂拉伸力学性能研究[J].推进技术,2015,36(9):1426-1432.(WANG Zhe-jun,QIANG Hong-fu,WANG Guang,et al. Tensile Mechanical Properties of HTPB Propellant at Low Temperature and High Strain Rate[J]. Journal of Propulsion Technology,2015,36(9):1426-1432.)
    [15] Wang Zhejun,Qiang Hongfu,Wang Guang,et al. Tensile Mechanical Properties and Constitutive Model for HTPB Propellant at Low Temperature and High Strain Rate[J]. Journal of Applied Polymer Science,2015,132(24).
    [16] Wang Zhejun,Qiang Hongfu,Wang Guang. Experimental Investigation on High Strain Rate Tensile Behaviors of HTPB Propellant at Low Temperatures[J]. Propellants,Explosives,Pyrotechnics,2015,40(6):814-820.
    [17] Collins B C,Maggi F,Matous K. Using Tomography to Characterize Heterogeneous Propellants[C]. Reno:46th AIAA Aerospace Sciences Meeting and Exhibit,2008.
    [18] Lee H,Brandyberry M,Tudor A. Three-Dimensional Reconstruction of Statistically Optimal Unit Cell of Polydisperse Particulate Composites Form Microtomography[J]. Physical Review,2009,80:261-301.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700