用户名: 密码: 验证码:
虚拟现实HPGeγ能谱仪操作平台设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of Operating Platform for HPGe γ Spectrometer Based on VR Technology
  • 作者:冯蕊 ; 刘成 ; 李磊民
  • 英文作者:FENG Rui;LIU Cheng;LI Lei-min;School of National Defense Science and Technology,Southwest University of Science and Technology;
  • 关键词:虚拟现实 ; HPGe ; γ谱仪 ; 稀疏编码 ; 人机交互 ; 实验教学
  • 英文关键词:virtual reality;;HPGe γ spectrometer;;sparse coding;;human-computer interaction;;experimental teaching
  • 中文刊名:HERE
  • 英文刊名:Nuclear Electronics & Detection Technology
  • 机构:西南科技大学国防科技学院;
  • 出版日期:2017-03-20
  • 出版单位:核电子学与探测技术
  • 年:2017
  • 期:v.37;No.256
  • 基金:西南科技大学研究生创新基金(16ycx001)资助
  • 语种:中文;
  • 页:HERE201703007
  • 页数:5
  • CN:03
  • ISSN:11-2016/TL
  • 分类号:37-41
摘要
利用计算机虚拟现实技术,仿真设计unity3D核环境的HPGe γ能谱仪操作平台。该操作平台利用3ds Max软件以稀疏编码模型为理论依据进行建模和渲染,采用SQL Server进行实验数据的存取,在Unity3D引擎中进行资源整合,使用户通过人机交互方式进行实验操作,以此实现对实验过程的仿真及实验结果的展示。实验结果表明:该操作平台能够完整地模拟HPGe γ谱仪操作过程,可应用于操作培训及实验教学。
        The HPGe γ spectrometer operating platform was designed by the virtual reality technology,supported by the simulation of real experimental environment in unity3D. It used 3ds Max to model and render,using sparse coding as the theoretical basis. The experimental data were made available to SQL Server. After the integration of models built above in Unity3D engine,user can do an experiment with the human-computer interaction to reconstruct the experimental process. The experimental results show that the operating platform could completely simulate HPGe γ spectrometer operating process. It could be applied to training and experimental teaching.
引文
[1]Liu D,Valdiviezo-Díaz P,Riofrio G,et al.Integration of Virtual Labs into Science E-learning[J].Procedia Computer Science,2015,75:95-102.
    [2]郭江华,聂矗,谢诞梅.虚拟仿真技术在核工程与核技术专业教学中的应用[J].中国电力教育,2011,X卷(9):37-38.
    [3]Loftin R B,Engleberg M,Benedetti R.Applying virtual reality in education:A prototypical virtual physics laboratory,1993[C].IEEE 1993 Symposium on Research Frontiers in.Piscataway:IEEE,1993:67-74.
    [4]de Lara J,Alfonseca M.Visual interactive simulation for distance education[J].Simulation,2003,79(1):19-34.
    [5]Tlaczala W,Zaremba M.Virtual experiments in nuclear physics,2007[C].2007 IEEE Instrumentation&Measurement Technology Conference IMTC 2007.Piscataway:IEEE,2007:1-6.
    [6]Pechousek J,Prochazka R,Prochazka V,et al.Virtual instrumentation technique used in the nuclear digital signal processing system design:Energy and time measurement tests[J].Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,2011,637(1):200-205.
    [7]Aghina MI C A,M O L A O N C,Jorge C A F,et al.Non-conventional interfaces for human-system interaction in nuclear plants’virtual simulations[J].Progress in Nuclear Energy,2012,59:33-43.
    [8]Da Silva M A R H,Do Esp I Rito Santo A E C,Marins E E N R,et al.Using virtual reality to support the physical security of nuclear facilities[J].Progress in Nuclear Energy,2015,78:19-24.
    [9]Potkonjak V,Gardner M,Callaghan V,et al.Virtual laboratories for education in science,technology,and engineering:A review[J].Computers&Education,2016,95:309-327.
    [10]闫文珠,刘成,李磊民,等.基于VR技术的机器人核事故训练平台研究[J].计算机仿真,2015,32(9):395-399.
    [11]Olshausen B A,Field D J.Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J].Nature,1996,381(6583):607.
    [12]陈聪发,夏换,陈志刚,等.基于3ds Max/Unity3D的水平定向钻穿越工程应用[J].电脑与信息技术,2015,23(2):17-21.
    [13]周春林,雷俊牛,戴军杰,等.低本底反康普顿HPGe gamma谱仪能量分辨率影响因素分析[J].核电子学与探测技术,2009,29(3):535-537.
    [14]张帅,吴金杰,吴冲,等.HPGe探测器能量刻度及探测效率模拟[J].核电子学与探测技术,2016,36(5):517-520.
    [15]何仕均.电离辐射工业应用的防护与安全[M].北京:原子能出版社,2009:185-187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700