用户名: 密码: 验证码:
长期施肥对稻田不同土层反硝化细菌丰度的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of long-term fertilization on the abundance of the key denitrifiers in profile of paddy soil profiles
  • 作者:陈娜 ; 刘毅 ; 黎娟 ; 袁婧 ; 葛体达 ; 吴金水 ; 孙志龙 ; 徐华勤
  • 英文作者:CHEN Na;LIU Yi;LI Juan;YUAN Jing;GE Ti-da;WU Jin-shui;SUN Zhi-long;XU Hua-qin;College of Agronomy, Hunan Agriculture University;Key Laboratory of Subtropical Agriculture Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences;Integrated Service for Agriculture Ningxiang County Huilongpu Town;
  • 关键词:水稻土 ; 长期施肥 ; 不同土层 ; 反硝化细菌 ; 种群丰度
  • 英文关键词:paddy soil;;long-term fertilization;;soil profile;;denitrifying bacteria;;abundance
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:湖南农业大学农学院;中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室;湖南省宁乡市回龙铺镇农业综合服务中心;
  • 出版日期:2019-05-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:v.39
  • 基金:国家自然基金资助项目(41771300,41301274)
  • 语种:中文;
  • 页:ZGHJ201905050
  • 页数:7
  • CN:05
  • ISSN:11-2201/X
  • 分类号:364-370
摘要
为了探讨长期施肥对稻田不同土层关键反硝化功能种群丰度的影响及核心驱动因子,以湖南宁乡长期施肥定位试验田为平台,选取不施肥(CK)、全量化肥(NPK)和秸秆还田(ST)3个处理,结合实时荧光定量PCR(q PCR)技术,系统分析了稻田不同土层(0~10,10~20,20~30,30~40cm)关键反硝化功能基因(narG、nirK和nirS)的丰度及其与土壤理化性质的内在联系.结果表明,相比于不施肥处理(CK),施肥处理(NPK和ST)在0~40cm土层土壤SOC、TN、NO_3~--N、NH_4~+-N和Olsen-P分别显著增加了2.2%~83.6%,3.5%~58.3%,70.8%~222.1%,0.9%~83.7%和16.5%~94.5%,pH值下降了0.31~0.67个单位;长期施用化肥和秸秆使narG、nirK和nirS基因丰度分别增加0.75~7.18倍,1.57~3.02倍和0.53~3.81倍,其中秸秆还田对反硝化细菌数量的影响比单施化肥更显著;稻田narG、nirK和nirS反硝化型细菌的丰度随土层深度增加而逐渐降低,具有明显的垂直分布特征;RDA分析结果显示,土壤养分如SOC和TN是影响水稻土narG、nirK和nirS反硝化型细菌垂直分布的关键因子,而pH值是调控反硝化细菌在稻田底土分布的核心驱动因子.研究结果可为提升稻田土壤肥力和减少稻田氮素损失和温室气体排放提供理论依据.
        The aims of this study were to explore the effect of long-term fertilization on the abundance of the key denitrifiers in paddy soil profiles(0~40 cm), and the core factors driving denitrifiers. Soils with non-fertilization(CK), inorganic fertilizer(NPK)and organic fertilizer(ST) were collected in Ning xiang County, Hunan Province, and real-time fluorescent quantitative PCR technology was used to analyze the abundance of narG-, nirK-and nirS-containing communities in paddy soil profile(0~10 cm,10~20 cm, 20~30 cm, 30~40 cm) and their relationship with soil properties. The results showed that compared with CK, SOC、TN、NO_3~--N、NH_4~+-N and Olsen-P in soil profile under NPK and ST increased by 2.2%~83.6%、3.5%~58.3%、70.8%~222.1%、0.9%~83.7% and 16.5%~94.5% respectively, and pH decreased by 0.31~0.67 units. Long-term application of inorganic fertilizer and organic fertilizer increased narG, nirK, and nir S gene abundance by 0.75~7.18 times, 1.57~3.02 times, and 0.53~3.81 times,respectively. And the effect of organic fertilizer on the abundance of denitrifiers was more significant than that of inorganic fertilizer application; The abundance of narG-, nirK-and nirS-containing communities decreased gradually with soil depth increasing, which presented an obvious vertical distribution; RDA analysis showed that soil nutrients such as SOC and TN were the core factors affecting the vertical distribution of narG-, nirK-and nirS-containing populations in paddy soil, especially in the cultivated horizon,while pH was the core driving factor regulating the distribution of denitrifying bacteria in paddy field subsoil. The results can provide theoretical basis for improving soil fertility and reducing nitrogen loss and greenhouse gas emission in paddy soils.
引文
[1] IPCC, Climate Change 2001:A scientific basis, intergovernmental panel on climate change[R]. Cambridge University Press, Cambridge, UK, 2001.
    [2] Conrad R. Soil microorganisms as controllers of atmospheric trace gases(H2, CO, CH4, CO2, N20, and NO)[J]. Microbiological Reviews,1996,60(4):609-640.
    [3] Baggs E M. A review of stable isotope techniques for N20 source partitioning in soils:recent progress, remaining challenges and future considerations[J]. Rapid Communications in Mass Spectrometry,2008,22(11):1664-1672.
    [4] Levy-Booth D J, Prescott C E, Grayston S J. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems[J]. Soil Biology&Biochemistry, 2014,75:11-25.
    [5] Braker G, Zhou J, Wu L, et al. Nitrite reductase genes(nirK and nirS)as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment Communities[J]. Applied and Environmental Microbiology, 2000,66(5):2096-2104.
    [6] Philippot L, Cuhel J, Saby N P A, et al. Mapping field-scale spatial patterns of size and activity of the denitrifier community[J].Environmental Microbiology, 2009,11(6):1518-1526.
    [7] Morales S E, Cosart T, Holben W E. Bacterial gene abundances as indicators of greenhouse gas emission in soils[J]. Isme Journal,2010,4(6):799-808.
    [8] Regan K, Kammann C, Hartung K, et al. Can differences in microbial abundances help explain enhanced N20 emissions in a permanent grassland under elevated atmospheric CO2[J]. Global Change Biology,2011,17(10):3176-3186.
    [9]李勇先.稻田土壤中氧化亚氮的释放机制及控制[D].杭州:浙江大学,2003.Li Y X. Study on relationship between CH4 and N20 emission and the control of CH4 and N2O from paddy soil[D]. Hangzhou:Zhejiang University, 2003.
    [10] Chaparro J M, Badri D V,Vivanco J M. Rhizosphere microbiome assemblage is affected by plant development[J]. Isme Journal, 2014,8(4):790-803.
    [11]陈哲,袁红朝,吴金水,等.长期施肥制度对稻田土壤反硝化细菌群落活性和结构的影响[J].生态学报,2009,29(11):5923-5929.Chen Z, Yuan H Z, Wu J S, et al. Activity and composition of denitrifying bacterial community respond differently to long-term fertilization[J]. Acta Ecologica Sinica,2009,29(11):5923-5929.
    [12] Enwall K, Philippot L, Hallin S. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization[J]. Applied and Environmental Microbiology, 2005,7(1):8335-8343.
    [13]陈哲.长期施肥对水稻土反硝化作用和反硝化功能微生物的影响机理[D].北京:中国科学院研究生院,2010.Chen Z. Effects of long-term fertilization on denitrification and denitrifying microorganisms in paddy soil[D]. Beijing:Chinese academy of science, 2010.
    [14] Hallin S, Lindgren P E. PCR Detection of genes encoding nitrite reductase in denitrifying bacteria PCR detection of genes encoding nitrite reductase in denitrifying bacteria[J]. Applied&Environmental Microbiology, 1999,65(4):1652-1657.
    [15] Michotey V, Mejean V, Bonin P. Comparison of Methods for Quantification of Cytochrome, cd1-Denitrifying Bacteria in Environmental Marine Samples[J]. Applied&Environmental Microbiology, 2000,66(4):1564-1571.
    [16] Zhao J, Ni T, Li Y, et al. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times[J]. PloS one, 2014,9(1):e85301.
    [17]孟红旗,刘景,徐明岗,等.长期施肥下我国典型农田耕层土壤的pH演变[J].土壤学报,2013,50(6):1109-1116.Meng H Q, Liu J, Xu M G, et al. Evolution of pH in topsoils of typical Chinese croplands under long-term fertilization[J]. Acta Pedologica Sinica,2013,50(6):1109-1116
    [18]于冰,宋阿琳,李冬初,等.长期施用有机和无机肥对红壤微生物群落特征及功能的影响[J].中国土壤与肥料,2017,(6):58-65.Yu B, Song A L, Li D C, et al. Influences of long-term application organic and inorganic fertilizers on the structure and function of microbial community in red soil[J]. Soil and Fertilization Science in China, 2017,(6):58-65.
    [19]杜林森,唐美铃,祝贞科,等.长期施肥对不同深度稻田土壤碳氮水解酶活性的影响特征[J].环境科学,2018,39(8):3901-3909.Du L S, Tang M L, Zhu Z K, et al. Effects of long-term fertilization on enzyme activities in profile of paddy soil profiles[J]. Environmental Science,2018,39(8):390-3909.
    [20]单艳红,杨林章,沈明星,等.长期不同施肥处理水稻土磷素在剖面的分布与移动[J].土壤学报,2005,42(6):970-976.Shan Y H, Yang L Z, Shen M X, et al. Accumulation and downward transport of phosphorus in paddy soil in long-term fertilization experiments[J]. Acta Pedologica Sinica,2005,42(6):970-976.
    [21]鲁如坤,时正元,赖庆旺.红壤长期施肥养分的下移特征[J].土壤,2000,32(1):27-29.Lu R K, Shi Z Y, Lai Q W. Characteristics of nutrient decline of long-term fertilization in red soil[J]. Soils, 2000,32(1):27-29.
    [22]解开治,徐培智,蒋瑞萍,等.有机无机肥配施提升冷浸田土壤氮转化相关微生物丰度和水稻产量[J].植物营养与肥料学报,2016,22(5):1267-1277.Xie K Z, Xu P Z, Jiang R P, et al. Combined application of inorganic and organic fertilizers improve rice yield and the abundance of soil nitrogen-cycling microbes in cold waterlogged paddy fields[J].Journal of Plant Nutrition and Fertilizer,2016,22(5):1267-1277.
    [23] Marschner P, Kandeler E, Marschner B. Structure and function of the soil microbial community in a long-term fertilizer experiment[J]. Soil Biology&Biochemistry, 2003,35(3):453-461.
    [24]馀一兰,唐海明,李益锋,等.长期施肥大麦生育期双季稻田土壤微生物和酶活性动态变化特征[J].中国农学通报,2017,33(13):12-20.Xu Y L, Tang H M, Li Y F, et al. Dynamic changes of soil microbe and soil enzyme activities during barley main growth stages under different long-term fertilizer treatments[J]. Chinese Agricultural Science Bulletin, 2017,33(13):12-20.
    [25]严昌,范分良,李兆君,等.长期施用有机和无机肥对黑土nirS型反硝化菌种群结构和丰度的影响[J].环境科学,2012,33(11):3967-3975.Yin C, Fan F L, Li Z J, et al. Influences of long-term application of organic and inorganic fertilizers on the composition and abundance of nirS-type denitrifiers in black soil[J]. Environmental Science,2012,33(11):3967-3975.
    [26]龚伟,颜晓元,王景燕.长期施肥对土壤肥力的影响[J].土壤,2011,43(3):336-342.Gong W, Yan X Y, Wang J Y. Effect of long-term fertilization on soil fertility[J]. Soils, 2011,43(3):336-342.
    [27] Liu E K, Yan C R, Mei X R, et al. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China[J]. Geoderma, 2010,158(3):173-180.
    [28] Klemedtsson L, Svensson B H, Rosswall T. Relationship between soil moisture content and nitrous oxide production during nitrification and denitrification[J]. Biology&Fertility of Soils, 1988,6(2):106-111.
    [29]乔云发,苗淑杰,韩晓增.长期施肥条件下黑土有机碳和氮的动态变化[J].土壤通报,2008,39(3):545-548.Qiao Y F, Miao S J, Han X Z. Dynamics of soil organic carbon and nitrogen in black soil under a long-term application of fertilizers[J].Chinese Journal of Soil Science,2008,39(3):545-548.
    [30]李晨华,张彩霞,唐立松,等.长期施肥土壤微生物群落的剖面变化及其与土壤性质的关系[J].微生物学报,2014,54(3):319-329.Li C H, Zhang C X, Tang L S, et al. Effects of long-term fertilizing regime on soil microbial diversity and soil property[J]. Acta Microbiologica Sinica, 2014,54(3):319-329.
    [31]Taylor J P,Wilson B, Mills M S, et al. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques[J]. Soil Biology&Biochemistry, 2002,34(3):387-401.
    [32] Fierer N, Schimel J P, Holden P A. Variations in microbial community composition through two soil depth profiles[J]. Soil Biology&Biochemistry, 2003,3 5(1):167-176.
    [33] Xian L, Chen C, Wang W, et al. Vertical distribution of soil denitrifying communities in a wet sclerophyll forest under long-term repeated burning[J]. Microbial Ecology, 2015,70(4):993.
    [34]曾希柏,王亚男,王玉忠,等.施肥对设施菜地nirK型反硝化细菌群落结构和丰度的影响[J].应用生态学报,2014,25(2):505-514.Zeng X B, Wang Y N, Wang Y Z, et al. Effects of different fertilization regimes on abundance and community structure of the nirK-type denitrifying bacteria in greenhouse vegetable soils[J]. Chinese Journal of Applied Ecology, 2014,25(2):505-514.
    [35] Liu S, Chen Y X, Sun H, et al. Temporal dynamics of DOC in forest soil along an elevational gradient of subalpine-alpine in the southwestern China[J]. Journal of Northwest Forestry University, 2015.
    [36] Palmer K, Drake H L, Horn A M A. Association of novel and highly diverse acid-tolerant denitrifiers with N2O fluxes of an acidic fen[J].Applied&Environmental Microbiology, 2010,76(4):1125-1134.
    [37] Dandie C E, Wertz S, Leclair C L, et al. Abundance, diversity and functional gene expression of denitrifier communities in adjacent riparian and agricultural zones[J]. Ferns Microbiology Ecology, 2011,77(1):69-82.
    [38] Enwall K, Throback I N, Stenberg M, et al. Soil resources influence spatial patterns of denitrifying communities at scales compatible with land management[J]. Applied&Environmental Microbiology, 2010,76(7):2243-2250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700