用户名: 密码: 验证码:
基于任务需求和ESM分析的受控生态生保系统植物部件品种规划
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Crop Scheduling of Biological Components in Controlled Ecological Life Support System Based on Mission Requirements and ESM Analysis
  • 作者:余青霓 ; 唐永康 ; 刘昊 ; 高峰 ; 艾为党
  • 英文作者:YU Qingni;TANG Yongkang;LIU Hao;GAO Feng;AI Weidang;China Astronaut Research and Training Center;
  • 关键词:任务需求 ; 受控生态生保系统(CELSS) ; 等效系统质量(ESM) ; 植物部件 ; 补给
  • 英文关键词:mission requirement;;controlled ecological life support system(CELSS);;equivalent system mass(ESM);;biological components;;supply
  • 中文刊名:ZRHT
  • 英文刊名:Manned Spaceflight
  • 机构:中国航天员科研训练中心;
  • 出版日期:2017-10-15
  • 出版单位:载人航天
  • 年:2017
  • 期:v.23;No.79
  • 基金:中国航天医学工程预先研究项目(2013SY54A0304)
  • 语种:中文;
  • 页:ZRHT201705003
  • 页数:8
  • CN:05
  • ISSN:11-5008/V
  • 分类号:17-24
摘要
针对任务周期长、距离远的长期载人深空探测,长期地外生存等任务要求建立受控生态生保系统,通过合适的植物部件利用当地资源进行空间作物生产。利用等效系统质量方法,比较了地球携带食物补给和受控生态生保系统植物部件就地生产两种补给模式的优劣。从受控生态生保系统角度讨论了主食、果蔬和蛋白质-脂肪等食物需求与植物部件设计的关系,对1~2年任务周期的深空探测飞行任务首先应配备小量蔬菜栽培装置。可以利用太阳光时,2年以上即可建立植物部件生产果蔬;15年以上方可生产粮食作物;而只能利用人工光源时,3.4年以上的深空探测任务才适合植物部件供应新鲜果蔬,而主食则需要76年以上。油料作物的空间生产在目前技术条件下不具备应用可行性。
        For the long-duration and far-distance manned deep-space exploration missions,the longterm extraterrestrial survival requires the controlled ecological life support system( CELSS) planting the selected crops in the biological components. The advantages and disadvantages of the present two kinds of supply modes for life support materials including the earth supply and the local bioregeneration in biological components were compared by equivalent system mass analysis. The relations between the food requirements of the staple food,the vegetables and the protein-fat and the biological components in terms of controlled ecological life support system were discussed. A small vegetable planting prototype facility should be equipped for 1 ~ 2 years manned deep-space exploration missions. When sunlight can be utilized,the biological components would be built to produce vegetables for at least 2 years missions,grain crops would be planted for at least 15 years missions; and yet,when artificial light can be utilized,only more than 3. 4 years manned deep-space exploration missions are suggested to produce vegetables by biological components,and more than 75 years for staple food. Oil crops are infeasible under current space technologies.
引文
[1]果琳丽,王平,朱思涌,等.载人月球基地工程[M].北京:中国宇航出版社,2013:312-314.Guo L L,Wang P,Zhu S Y,et al.Engineering of Manned Lunar Base[M].Beijing:Chinese Aerospace Press,2013:312-314.(in Chinese)
    [2]王普秀,郑传先.航天环境控制与生命保障工程基础[M].北京:国防工业出版社,2003:1-75.Wang P X,Zheng C X.Space Environmental Control and Life Support Engineering[M].Beijing:National Defense Industry Press,2003:1-75.(in Chinese)
    [3]Levri J A,Drysdale A E,Ewert M K,et al.Advanced life support equivalent system mass guidelines document[R].NASA/TM-2003-212278,A-0310698,2003.
    [4]Hunter J,Olabi A,Spies R,et al.Diet design and food processing for bioregenerative life support systems[C]//2th International Conference on Evolvable Systems,Lausanne,Switzerland,1998:296-307.
    [5]Bell S,Rodriguez L F,Kortenkamp D,et al.Using dynamic simulations and automated decision tools to design lunar habitats[C]//35th International Conference on Environmental Systems,Rome,Italy,2005:3011.
    [6]Aydogan S,Blau G,Pekny J F,et al.Determining optimum planting schedule using diet optimization and advanced crop scheduling models[C]//35th International Conference on Environmental Systems,Rome,Italy,2005:2815.
    [7]Jones H.Lunar base life support mass flow and recycling[C]//38th International Conference On Environmental Systems,San Francisco,2008:2184.
    [8]Bourland C T,Kloeris V,Rice B L,et al.Food systems for space and planetary flight[M]//Lane H W,Schoeller D A.Nutrition is spaceflight and Weightlessness Models.Boca Raton:CRC Rress,2000:19-40.
    [9]Hanford A J.Advanced life support baseline value and assumptions document[R].NASA/CR-2004-208941,2004.
    [10]Cooper M R,Douglas G,Perchonok M.Developing the NASA food system for long-duration missions[J].Journal of Food Science,2011,76:40-48.
    [11]Cooper M R,Catauro P,Perchonok M.Development and evaluation of biogegenerative menus for Mars habitat missions[J].Acta Astronautica,2012,81:555-562.
    [12]中国营养学会.中国居民膳食营养素参考摄入量(2013版)[M].北京:科学出版社,2014:77-161.Chinese Nutrition Society.Chinese Dietary Reference Inakes(2013)[M].Beijing:Science Publishing,2014:77-161.(in Chinese)
    [13]白树民,陈斌,黄纪明,等.航天营养与食品工程[M].北京:国防工业出版社,2004,13-78.Bai Shumin,Chen Bin,Huang Jiming,et al.Space Nutrition and Food engineering[M].Beijing:National Defense Industry Press,2004,13-78.(in Chinese)
    [14]Wheeler R M,Stutte G W,Yorio N C,et al.Plant Growth and Human Life Support for Space Travel[M]//Pessarakli M.Handbook of Plant and Crop Physiology,2nd Edn.New York:Marcel Dekker Inc.,2001:925-941.
    [15]Kuo Y F,Whitaker D R,Chiu G T C,et al.System level design and initial equivalent system mass analysis of a solidphase thermophilic aerobic rector for advanced life support systems[C]//35th International Conference on Environmental Systems(ICES),Rome,Italy,2005:2983.
    [16]Weiss I,Ozen B F,Hayes K D,et al.Comparison of equivalent system mass(ESM)of yeast and flat bread systems[C]//33th International Conference on Environmental Systems(ICES),Vancouver,British Columbia,Canada,2003:2618.
    [17]Stafford K W,Jerng L T,Drysdale A E,et al.Advanced life support,systems integration,modeling,and analysis reference missions document[R].JSC-39502,CTSD-ADV-383,2001.
    [18]Barta D J,Castillo J M,Fortson R E.The biomass production system for bioregenerative planetary life support systems test complex:preliminary designs and considerations[C]//29th International Conference on Environmental Systems(ICES),Warrendale Pennsylvania,1999:2188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700