用户名: 密码: 验证码:
基于针孔阵列型的单次曝光双波长叠层成像
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Pinhole-array-based single-shot ptychography with dual-wavelenghth
  • 作者:罗勇 ; 许文慧 ; 史祎诗
  • 英文作者:LUO Yong;XU Wenhui;SHI Yishi;School of Optoelectronics, University of Chinese Academy of Sciences;Academy of Opto-Electronics, Chinese Academy of Sciences;
  • 关键词:针孔阵列 ; 单次曝光 ; 叠层成像(PIE) ; 波长参数
  • 英文关键词:pinhole-array;;single-shot;;ptychographic imaging engine;;wavelength parameters
  • 中文刊名:ZKYB
  • 英文刊名:Journal of University of Chinese Academy of Sciences
  • 机构:中国科学院大学光电学院;中国科学院光电研究院;
  • 出版日期:2019-01-15
  • 出版单位:中国科学院大学学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(61575197);; 中国科学院“科教结合”教育创新项目(KJ20108036)资助
  • 语种:中文;
  • 页:ZKYB201901006
  • 页数:7
  • CN:01
  • ISSN:10-1131/N
  • 分类号:34-40
摘要
传统的叠层成像技术在增加参与成像的波长数量时,可有效地提高系统的成像质量和抗噪声能力。该技术已广泛应用于成像及测量等领域。但其复杂的机械移动式曝光方式,导致系统存在抖动、数据采集效率低且精度较差等问题,在增加成像波长数量时更严重地影响系统成像和测量性能。采用针孔阵列型双波长单次曝光叠层成像技术,经过实际的光学实验和数值模拟论证,在双波长情况下实现对实验数据的高效和高精度采集,避免了传统多波长叠层成像技术的弊端。还指出并论证,在选择参与成像的激光波长时,有必要考虑两个重要的波长参数:中心波长和波长间隔,为多波长的叠层成像技术提供有效的指导依据。与传统的双波长、多波长叠层成像技术相比,基于针孔阵列型的双波长单次曝光叠层成像技术具有更高的效率和更广泛的应用领域。
        The traditional ptychographic imaging engine effectively improves the imaging quality and anti-noise ability of the system when the number of wavelengths involved in imaging increases, and it has been widely used in the fields of imaging and measurement. However, the complicated mechanical moving exposure method leads to jittering of the system, data acquisition inefficiency, and poor accuracy, and increase in the number of imaging wavelengths even more seriously affects the system imaging and measurement performance. In this work, the pinhole-array dual-wavelength single-shot ptychographic imaging is used. Actual optical experiments and numerical simulation demonstrate that the experimental data can be collected efficiently with double wavelength and high precision, and the drawbacks of traditional multiwavelength stack imaging are avoided. We also point out and demonstrat that, in choosing the laser wavelength involved in imaging, it is necessary to consider two important wavelength parameters, center wavelength and wavelength interval, which provides effective guidance for multiwavelength multilayer imaging technology. The pinhole-array-based single-shot ptychographic imaging with dual-wavelength has higher efficiency and a wider range of applications, compared with the traditional dual wavelength and multiwavelength ptychographic imaging engines.
引文
[1] Faulkner H M, Rodenburg J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2):023 903.
    [2] Rodenburg J M, Faulkner H M. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 2004, 85(20):4 795-4 797.
    [3] Miao J, Ishikawa T, Anderson E H, et al. Phase retrieval of diffraction patterns from noncrystalline samples using the oversampling method[J]. Physical Review B, 2003, 67(67):386-393.
    [4] Rodenburg J M, Hurst A C, Cullis A G, et al. Hard-x-ray lensless imaging of extended objects[J]. Physical Review Letters, 2007, 98(3):034 801.
    [5] Nishino Y, Miao J, Ishikawa T. Image reconstruction of nanostructured nonperiodic objects only from over sampled hard X-ray diffraction intensities[J]. Physical Review B, 2003, 68(22):220 101.
    [6] Humphry M J, Kraus B, Hurst A C, et al. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging[J]. Nature Communications, 2012, 3(2):730.
    [7] Maiden A M, Humphry M J, Sarahan M C, et al. An annealing algorithm to correct positioning errors in ptychography[J]. Ultramicroscopy, 2012, 120(5):64-72.
    [8] Thibault P, Dierolf M, Menzel A, et al. High-resolution scanning x-ray diffraction microscopy[J]. Science, 2008, 321(5 887):379-382.
    [9] Shi Y, Li T, Wang Y, et al. Optical image encryption via ptychography[J]. Optics Letters, 2013, 38(9):1 425-1 427.
    [10] Shi Y L, Dong C Z, Fritzsche S, et al. Theory of X-Ray Anisotropy and Polarization Following the Dielectronic Recombination of Initially Hydrogen-Like Ions[J]. Chin Phys Lett, 2013, 30(2):23 402.
    [11] Shi Y S, Wang Y L, Zhang S G. Generalized ptychography with diverse probes[J]. Chinese Physics Letters, 2013, 30(5):054 203.
    [12] 许文慧, 李拓, 史祎诗. 基于傅里叶叠层成像的光学图像加密[J]. 中国科学院大学学报, 2016, 33(5):612-617.
    [13] 李拓, 史祎诗. Attack on optical double random phase encryption based on the principle of ptychographical imaging[J]. 中国物理快报:英文版, 2016, 33(1):63-66.
    [14] Claus D, Robinson D J, Chetwynd D G, et al. Dual wavelength optical metrology using ptychography[J]. Journal of Optics, 2013, 15(3):035 702.
    [15] Noom D W, Boonzajer Flaes D E, Labordus E, et al. High-speed multi-wavelength Fresnel diffraction imaging[J]. Optics Express, 2014, 22(25):30 504-30 511.
    [16] Daniel W. E. Noom, Kjeld S. E. Eikema, Witte S. Lensless phase contrast microscopy based on multiwavelength Fresnel diffraction[J]. Optics Letters, 2014, 39(2):193-196.
    [17] 王东,马迎军,刘泉,史祎诗.可见光域多波长叠层衍射成像的实验研究[J].物理学报,2015,64(8):150-160.
    [18] 潘安, 张晓菲, 王彬,等. 厚样品三维叠层衍射成像的实验研究[J]. 物理学报, 2016, 65(1):107-122.
    [19] Liu C, Pan X C, Zhu J Q. Coherent diffractive imaging based on the multiple beam illumination with cross grating[J]. Acta Physica Sinica, 2013, 62(18):116-121.
    [20] CohenO, Sidorenko P. Single-shot ptychography[J]. Optica, 2016, 3(1):9-14.
    [21] 张鹏. 基于信息光学的多维数据加密及数字水印[D]. 天津:天津大学, 2006.
    [22] 吕乃光. 傅里叶光学[M].3版.北京: 机械工业出版社, 2016.
    [23] 王雅丽, 史祎诗, 李拓,等. 可见光域叠层成像中照明光束的关键参量研究[J]. 物理学报, 2013, 62(6):201-210.
    [24] 谢宗良, 马浩统, 任戈,等. 小孔扫描傅里叶叠层成像的关键参量研究[J]. 光学学报, 2015, 35(10):94-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700