用户名: 密码: 验证码:
3D打印用聚乳酸的改性及其应用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modification and Application Progress of 3D Printing Poly(lactic acid) Materials
  • 作者:潘刚伟 ; 杨静 ; 孙其松 ; 董震 ; 侯秀良 ; 马博谋 ; 孙建荣
  • 英文作者:PAN Gangwei;YANG Jing;SUN Qisong;DONG Zhen;HOU Xiuliang;MA Bomou;SUN Jianrong;School of Textiles & Clothing,Nantong University;Key Laboratory of Eco-Textiles,Ministry of Education,Jiangnan University;Shanghai Xinning Biomaterials Co.,Ltd.;
  • 关键词:聚乳酸 ; 3D打印 ; 改性 ; 立构聚乳酸 ; 组织工程
  • 英文关键词:poly(lactic acid);;3D printing;;modifications;;stereo-complexed poly(lactic acid);;tissue engineering
  • 中文刊名:SULA
  • 英文刊名:Plastics
  • 机构:南通大学纺织服装学院;江南大学生态纺织教育部重点实验室;上海新宁生物材料有限公司;
  • 出版日期:2019-06-18
  • 出版单位:塑料
  • 年:2019
  • 期:v.48;No.261
  • 基金:南通市科技项目(GY12016037)
  • 语种:中文;
  • 页:SULA201903009
  • 页数:5
  • CN:03
  • ISSN:11-2205/TQ
  • 分类号:37-41
摘要
聚乳酸(PLA)具有独特的可生物降解性和生物相容性,是一种理想的3D打印材料。3D打印PLA材料应用广泛,特别是在生物医用领域。然而,PLA也存在着一些性能缺陷,在一定程度上限制了其在3D打印上的应用,因此需要对PLA进行改性。文章首先分析了PLA作为3D打印材料存在脆性大、耐热性差和易水解的性能缺陷;其次综述了3D打印PLA的改性方法,包括共聚改性、表面改性和共混改性;然后介绍了3D打印PLA材料的应用领域,包括生物医学领域和工业制造领域。最后文章介绍了具有优异耐热性和耐水解性的生物降解型立构聚乳酸,并对立构聚乳酸作为3D打印材料的前景进行了展望。
        Poly( lactic acid)( PLA) is a promising polymer as 3 D printing materials due to the unique biodegradability and biocompatibility. 3 D printing PLA products have been widely used,especially in the field of biomedical field. As one of the most important bio-based materials,PLA is the research hotspot in 3 D printing field. However,some drawbacks of PLA,to some extent,limits the application in 3 D printing field. Thus,modifications of PLA are conducted. Firstly,the drawbacks of PLA as raw materials of 3 D printing such as brittleness,poor heat resistance and hydrolysis stabilityare are analyzed.Secondly,the relevant modification methods including copolymerization modification,surface modification and blending modification are reviewed. Thirdly,application fields of 3 D printing PLA products are introduced,including biomedical field and industrial manufacturing field. Finally,biodegradable stereo-complexed poly( lactic acid)( sc-PLA) with excellent heat resistance and hydrolysis resistance is introduced,and the prospect of sc-PLA utilized as raw materials of 3 D printing is discussed.
引文
[1]张胜,徐艳松,孙姗姗,等. 3D打印材料的研究及发展现状[J].中国塑料,2016,30(1):7-14.
    [2]王成成,李梦倩,雷文,等. 3D打印用聚乳酸及其复合材料的研究进展[J].塑料科技,2016,44(6):89-91.
    [3]陈彩珠,潘汉军. 3D打印高分子材料研究进展[J].工程塑料应用,2016,44(9):137-140.
    [4]潘腾,朱伟,闫春泽,等.激光选区烧结3D打印成形生物高分子材料研究进展[J].高分子材料科学与工程,2016,32(3):178-183.
    [5]李俊起,朱爱臣,马丽霞,等.聚乳酸在3D打印医疗器械产品中的研究进展[J].生物医学工程研究,2016,35(4):309-312.
    [6] PAN G,XU H,MU B,et al. A clean approach for potential continuous mass production of high-molecular-weight polylactide fibers with fullystereo-complexed crystallites[J]. Journal of Cleaner Production,2018,176:151-158.
    [7] WU C. Modulation,functionality,and cytocompatibility of threedimensional printing materials made from chitosan-based polysaccharide composites[J]. Materials Science&Engineering:C,2016,69:27-36.
    [8]陈卫,汪艳,傅轶.用于3D打印的改性聚乳酸丝材的制备与研究[J].工程塑料应用,2015,43(8):21-24.
    [9] DOROZHKIN S V. Bioceramics of calcium orthophosphates[J].Biomaterials,2010,31(7):1465-1485.
    [10] HU X,LI Y,LI M,et al. Renewable and supertoughened polylactidebased composites:Morphology, interfacial compatibilization, and toughening mechanism[J]. Industrial&Engineering Chemistry Research,2016,55(34):9195-9204.
    [11] SENATOV F S,NIAZA K V,STEPASHKIN A A,et al. Low-cycle fatigue behavior of 3D-printed PLA-based porous scaffolds[J].Composites Part B:Engineering,2016,97:193-200.
    [12] XU W,PRANOVICH A,UPPSTU P,et al. Novelbiorenewable composite of wood polysaccharide and polylactic acid for three dimensional printing[J]. Carbohydrate Polymers,2018,187:51-58.
    [13] ZHAO X G,HWANG K,LEE D,et al. Enhanced mechanical properties of self-polymerized polydopamine-coated recycled PLA filament used in3D printing[J]. Applied Surface Science,2018,441:381-387.
    [14] MURPHY C A,COLLINS M N. Microcrystalline cellulose reinforced polylactic acid biocomposite filaments for 3D printing[J]. Polymer Composites,2018,39(4):1311-1320.
    [15] LIU W,WU N,POCHIRAJU K. Shape recovery characteristics of Si C/C/PLA composite filaments and 3D printed parts[J]. Composites Part A:Applied Science and Manufacturing,2018,108:1-11.
    [16] ZHOU C,YANG K,WANG K,et al. Combination of fused deposition modeling and gas foaming technique to fabricated hierarchical macro/microporous polymer scaffolds[J]. Materials&Design,2016,109:415-424.
    [17] GUO S,HEUZEY M,THERRIAULT D. Properties of polylactide inks for solvent-cast printing of three-dimensional freeform microstructures[J]. Langmuir,2014,30(4):1142-1150.
    [18] SECK T M,MELCHELS F P W,FEIJEN J,et al. Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins[J]. Journal of Controlled Release,2010,148(1):34-41.
    [19] SHERWOOD J K,RILEY S L,PALAZZOLO R,et al. A three—dimensional osteochondral composite scafold for articular cartilage repair[J]. Biomaterials,2002,23(24):4739-4751.
    [20] MELCHELS F P W,BERTOLDI K,GABBRIELLI R,et al.Mathematically defined tissue engineering scaffold architectures prepared by stereolithography[J]. Biomaterials,2010,31(27):6909-6916.
    [21] JANSEN J,MELCHELS F P W,GRIJPMA D W,et al. Fumaric acid monoethyl ester-functionalized poly(D, L-lactide)/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography[J]. Biomacromolecules,2009,10(2):214-220.
    [22] SENATOV F S,NIAZA K V,ZADOROZHNYY M Y,et al. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds[J]. Journal of the Mechanical Behavior of Biomedical Materials,2016,57:139-148.
    [23] ROGINA A,PRIBOLAN L,HANEK A,et al. Macroporous poly(lactic acid)construct supporting the osteoinductive porous chitosanbased hydrogel for bone tissue engineering[J]. Polymer,2016,98:172-181.
    [24] DRUMMER D,CIFUENTES-CULLAR S,RIETZEL D. Suitability of PLA/TCP for fused deposition modeling[J]. Rapid Prototyping Journal,2012,18(6):500-507.
    [25] ZHOU W Y,LEE S H,WANG M,et al. Selective laser sintering of porous tissue engineering scaffolds from poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres[J]. Journal of Materials Science:Materials in Medicine,2008,19(7):2535-2540.
    [26] DUAN B,WANG M,ZHOU W Y,et al. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering[J]. Acta Biomaterialia,2010,6(12):4495-4505.
    [27] LIU D,ZHUANG J,SHUAI C,et al. Mechanical properties'improvement of a tricalcium phosphate scaffold with poly-l-lactic acid in selective laser sintering[J]. Biofabrication,2013,5(2):025005.
    [28] SERRA T,ORTIZ-HERNANDEZ M,ENGEL E,et al. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds[J]. Materials Science and Engineering:C,2014,38:55-62.
    [29] ALMEIDA C R,SERRA T,OLIVEIRA M I,et al. Impact of 3-D printed PLA-and chitosan-based scaffolds on human monocyte/macrophage responses:unraveling the effect of 3-D structures on inflammation[J]. Acta Biomaterialia,2014,10(2):613-622.
    [30] DONG J,ZHANG S,LIU H,et al. Novel alternative therapy for spinal tuberculosis during surgery:reconstructing with anti-tuberculosis bioactivity implants[J]. Expert Opinion on Drug Delivery,2014,11(3):299-305.
    [31] WATER JJ,BOHR A,BOETKER J,et al. Three dimensional printing of drug eluting implants:preparation of an antimicrobial polylactide feedstock material[J]. Journal of Pharmacological Sciences,2015,104(3):1099-1107.
    [32] WEISMAN J,NICHOLSON J C,TAPPA K,et al. Antibiotic and chemotherapeutic enhanced three dimensional printer filaments and constructs for biomedical applications[J]. International Journal of Nanomedicine,2015,10(1):357-370.
    [33]郑锋,余正希,陈宣煌,等.基于数字化设计和3D打印胫骨近端骨折内固定的关键技术[J].中国组织工程研究,2016,20(26):3837-3842.
    [34]黄从云,朱剑华,刘欣,等. 3D打印技术在肝脏切除术中的应用[J].中国普外基础与临床杂志,2015,22(11):1351-1353.
    [35] ANDERSON J R,THOMPSON W L,ALKATTAN A K,et al. Three dimensional printing of anatomically accurate, patient specific intracranial aneurysm models[J]. Journal of Neurointerventional Surgery,2016,8(5):517-520.
    [36]张涛,刘丰丰,张玉蕾,等. 3D打印桌面机制作砂型模具制品分析[J].橡塑技术与装备,2016,42(24):70-72.
    [37]熊祖强,江权,龚彦华,等.基于三维扫描与打印的岩体自然结构面试样制作方法与剪切试验验证[J].岩土力学,2015,36(6):1557-1565.
    [38]陈军,吴懋亮,陈峻,等.燃料电池双极板的3D打印加工方法[J].塑料工业,2016,44(4):47-50.
    [39] TIAN X,LIU T,YANG C,et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J].Composites Part A:Applied Science and Manufacturing,2016,88:198-205.
    [40] PAN G,XU H,MU B,et al. Complete stereo-complexation of enantiomeric polylactides for scalable continuous production[J].Chemical Engineering Journal,2017,328:759-767.
    [41] PAN G,XU H,MA B,et al. Polylactide fibers with enhanced hydrolytic and thermal stability via complete stereo-complexation of poly(L-lactide)with high molecular weight of 600,000 and lowermolecular-weight poly(D-lactide)[J]. Journal of Materials Science,2018,53(7):5490-5500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700