用户名: 密码: 验证码:
水华初期蓝藻颗粒有机物在不同菌群作用下分解释放营养盐的过程研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Processes of nutrients release from particulate organic matter derived from cyanobacterial blooms in early stage by different microflora
  • 作者:黄亚新 ; 张小倩 ; 杨燕 ; 孔繁翔 ; 卢亚萍 ; 施丽梅
  • 英文作者:HUANG Yaxin;ZHANG Xiaoqian;YANG Yan;KONG Fanxiang;LU Yaping;SHI Limei;College of Life Sciences,Nanjing Agricultural University;State Key Laboratory of Lake Science and Environment,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences;
  • 关键词:蓝藻水华 ; 微生物 ; 分解 ; 营养盐 ; 太湖
  • 英文关键词:cyanobacterial blooms;;microflora;;biodegradation;;nutrient recycle;;Lake Taihu
  • 中文刊名:STKX
  • 英文刊名:Ecological Science
  • 机构:南京农业大学生命科学学院;中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室;
  • 出版日期:2017-09-15
  • 出版单位:生态科学
  • 年:2017
  • 期:v.36;No.131
  • 基金:江苏省自然科学基金项目(BK20131466);; 国家自然科学基金项目(31370509)
  • 语种:中文;
  • 页:STKX201705008
  • 页数:9
  • CN:05
  • ISSN:44-1215/Q
  • 分类号:57-65
摘要
蓝藻水华为富营养化湖泊制造了大量有机物,这些藻源有机物的分解影响了水体中的营养盐循环。通过室内模拟附生细菌(A),附生细菌与游离细菌(AF),及附生细菌与底泥细菌(AS)三个实验组作用下蓝藻颗粒有机物(POM)在黑暗条件下长期(132天)分解过程,监测颗粒态有机碳(POC)、氮(PON)、磷(POP)、硝酸盐(NO_3~–)、磷酸盐(PO_4~(3–))、溶解性有机碳(DOC)等浓度的变化,揭示蓝藻颗粒有机物的分解和营养盐释放规律。结果表明,在整个降解过程中,叶绿素a(Chla)浓度在培养第28天时降低至最低水平,在三个实验组中Chla分解速率随时间的变化而增大,平均分解速率为:(0.15±0.06)mg/(L·d)。而POC,PON,POP的分解大致分为两个阶段,快速分解大都在28天以内,而后为缓慢降解,且分解速率明显低于Chla,平均分解速率分别为(0.03±0.03)mg/(L·d),(0.04±0.05)mg/(L·d),(0.03±0.02)mg/(L·d),且呈现随着时间变化而降低的趋势。三者之间及其在三个实验组之间的分解速率并无显著性差异。A、AF、AS三个实验组中,POC的最大分解量分别为82.30%、81.90%、63.14%;PON的最大分解量分别为92.85%、91.68%、73.27%;POP的最大分解量分别为93.50%、91.25%、70.11%,表明了POC的转化量小于PON和POP,AS实验组中POM的分解量最低,说明了底泥微生物对藻源有机物具有较低的分解量。此外,随着藻源有机物的降解,水体中NO_3~–、PO_4~(3–)、DOC的最大值出现在Chla完全降解之后,分别是初始值的2.36倍、2.13倍、2.64倍,说明了藻源颗粒有机物的分解将显著增加水体中的营养盐。
        Cyanobacterial blooms introduce plenty of organic matters to eutrophic lakes,and degradation of these organic matters greatly affects the circulation of nutrients in the water body.In this study,a long-term(132 days)degradation process of particulate organic matter(POM)derived from bloom-forming cyanobacteria was simulated under dark conditions in laboratory.The contribution of three bacterial communities to the processes,including cyanobacteria attached bacteria(A),combined effect of attached bacteria and free living bacteria(AF),and combined effect of attached bacteria and sediment bacteria(AS),were investigated.Changes in concentrations of particulate organic carbon(POC),particulate organic nitrogen(PON),particulate organic phosphorus(POP),nitrate(NO_3~-),phosphate(PO_4~(3-))and dissolved organic carbon(DOC)were monitored to reveal the pattern of POM decomposition and nutrient release.The results showed that during the entire degradation process,the concentration of Chla reduced below detection at the 28~(th) day.Decomposition rate of Chla increased with time in all the three experimental groups,with an average of(0.15±0.06)mg/(L·d).However,the decomposition of POC,PON and POP roughly divided into two phases including the rapid decomposition stage mostly within 28 days,and then the slow decomposition phase.The average decomposition rate of POC,PON and POP decreased during the entire process,and was(0.03±0.03)mg/(L·d),(0.04±0.05)mg/(L·d)and(0.03±0.02)mg/(L·d),respectively.They were not significantly different from each treatment,and also not different among the three experimental groups.The maximum release amount of POC in the three experimental groups A,AF,AS was 82.30%,81.90% and 63.14%;that of PON was 92.85%,91.68% and 73.27%;and that of PP was:93.50%,91.25%and 70.11%respectively.It indicated that the AS experimental group had the lowest POM release,and the amount of POC release was less than PON and POP.These results illustrated that sediment bacteria might contribute more to POM degradation.In addition,along with degradation of the organic matter,the maximum value of NO_3~-,PO_4~(3-),DOC in water was 2.36,2.13 and 2.64 times of their initial value,respectively.It indicated the algal derived POM could be quickly converted into nutrients,which could be resupplied for the growth of cyanobacteria.
引文
[1]陈伟民,蔡后建.微生物对太湖微囊藻的好氧降解研究[J].湖泊科学,1996,8(3):248–252.
    [2]史红星,刘会娟,曲久辉,等.富营养化水体中微囊藻细胞碎屑对氨氮的吸附特性.环境化学[J],2005,24(3):241–244.
    [3]孙小静,秦伯强,朱广伟.蓝藻死亡分解过程中胶体态磷、氮、有机碳的释放[J].中国环境科学,2007,27(3):341–345.
    [4]KRIVTSON V,BELLINGER E G,SIGGE D C.Elemental composition of Microcystis aeruginosa under conditions of lake nutrient depletion[J].Aquatic Ecology,2005,39(2):123–134.
    [5]姜霞,钟立香,王书航,等.巢湖水华暴发期水沉积物界面溶解性氮形态的变化[J].中国环境科学,2009,29(11):1158–1163.
    [6]NAKAMURA Y,WATANABE M M,Growth characteristics of Chattonella antique.Part 2.Effects of Nutrients on Growth[J].Journal of the Oceanographical Society of Japan,1983,39(4):151–155.
    [7]马喆,王勤,肖琳,等.附生细菌在微囊藻(Microcystis)藻华颗粒上的定殖和生长[J].农业环境科学学报,2007,26(5):1894–1897.
    [8]陈丙法,冯慕华,尚丽霞,等.秋季聚积蓝藻打捞对蓝藻生长及水质影响的原位实验[J].湖泊科学,2016,28(2):253–262.
    [9]SHI L,CAI Y,KONG F,et al.Specific association between bacteria and buoyant Microcystis colonies compared with other bulk bacterial communities in the eutrophic Lake Taihu,China[J].Environmental Microbiology Reports,2012,4(6):669–678.
    [10]WORM J,SONDERGAADRD M.Dynamics of heterotrophic bacteria attached to Microcystis spp.(Cyanobacteria)[J].Aquatic Microbial Ecology,1998,14(1):19–28.
    [11]孙芳,郑忠明,陆开宏,等.底泥微生物活性对蓝藻水华水柱及沉积物间隙水氮磷分布的影响[J].生态科学,2011,30(3):217–222.
    [12]BRUNBERG A K.Contribution of bacteria in the mucilage of Microcystis spp.(Cyanobacteria)to benthic and pelagic bacterial production in a hypereutrophic lake[J].FEMS Microbiology Ecology,1999,29(1):13–22.
    [13]SHI L,CAI Y,WANG X,et al.Community structure of bacteria associated with Microcystis colonies from cyanobacterial blooms[J].Journal of Freshwater Ecology,2010,25(2):193–203.
    [14]叶文瑾.太湖营养化水体和底泥中微生物群落的分子生态学研究[D].上海:上海交通大学,2009.
    [15]冯胜,刘义,余广彬.微生物作用下的微囊藻降解试验研究[J].现代农业科技,2009,1(1):253–255.
    [16]朱梦圆,朱广伟,王永平.太湖蓝藻水华衰亡对沉积物氮、磷释放的影响[J].环境科学,2011,32(2):409–415.
    [17]李柯,关保华,刘正文.蓝藻碎屑分解速率及氮磷释放形态的实验分析[J].湖泊科学,2011,23(6):919–925.
    [18]孙远军.淀山湖蓝藻碎屑的好氧降解和营养盐释放规律研究[J].中国环境科学,2013,33(11):2047–2052.
    [19]JIAO L,ZHANG L,WANG X,et al.Narrow graphene nanoribbons from carbon nanotubes[J].Nature,2009,458(7240):877–880.
    [20]QIN B Q,HU W P,CHEN W M.Process and mechanism of environmental changes of the Taihu Lake[M].Beijing:Science Press,2004.
    [21]高香玉,崔益斌,胡长伟,等.太湖梅梁湾2008年有机污染物检测及环境影响度[J].中国环境科学,2009,29(12):1296–1300.
    [22]陈鸣,陆卫鲜,郁建桥,等.太湖梅梁湾水污染及蓝藻分析计算[J].河海大学学报(自然科学版),2010,38(6):634–638.
    [23]刘霞.太湖蓝藻水华中长期动态及其与相关环境因子的研究[D].武汉:华中科技大学,2012.
    [24]OLSON J S.Energy storage and the balance of producers and decomposers in ecological systems[J].Ecology,1963,44(2):322–331.
    [25]ZHANG Y,VAN Dijk M A,LIU M,et al.The contribution of phytoplankton degradation to chromophoric dissolved organic matter(CDOM)in eutrophic shallow lakes:field and experimental evidence[J].Water Research,2009,43(18):4685–4697.
    [26]翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社,2000.
    [27]李文朝,陈开宁,吴庆龙,等.东太湖水生植物生物质腐烂分解实验[J].湖泊科学,2001,13(4):331–336.
    [28]BATTLE J M,MIHUC T B.Decomposition dynamics of aquatic macrophytes in the lower Atchafalaya,a large flood plain river[J].Hydrobiologia,2000,418:123–136.
    [29]MAGEN C,CHAILLOU G L,Crowe S A,et al.Origin and fate of particulate organic matter in the southern Beaufort Sea–Amundsen Gulf region,Canadian Arctic[J].Estuarine Coastal&Shelf Science,2010,86(1):31–41.
    [30]代静玉,秦淑平,周江敏.水杉凋落物分解过程中溶解性有机质的分组组成变化[J].生态环境,2004,13(2):207–210.
    [31]BARGALI S S,SHUKLA K,SINGH L,et al.Leaf litter decomposition and nutrient dynamics in four tree species of dry deciduous forest[J].Tropical Ecology,2015,56(2):191–200.
    [32]陈书秀,江明喜.三峡地区香溪河流域不同树种叶片凋落物的分解[J].生态学报,2006,26(9):2905–2912.
    [33]FISCHER H,SACHSE A,STEINBERG C E W,et al.Differential retention and utilization of dissolved organic carbon by bacteria in river sediments[J].Limnology and Oceanography,2002,47(6):1702–1711.
    [34]FALLON R D,BROCK T D.Decomposition of blue-green algal(cyanobacterial)blooms in Lake Mendota,Wisconsin[J].Applied and Environmental Microbiology,1979,37(5):820–830.
    [35]潘慧云,徐小花,高士祥.沉水植物衰亡过程中营养盐的释放过程及规律[J].环境科学研究,2008,21(1):64–68.
    [36]MENéNDEZ M,MARTINEZ M,HERNáNDEZ O et al.Comparison of leaf decomposition in two mediterranean rivers:a large eutrophic river and an oligotrophic stream(S Catalonia,NE Spain)[J].International Review of Hydrobiology,2001,86(4/5):475–486.
    [37]ANDERSON J T,SMITH L M.The effects of flooding regimes on decomposition of Polygonum pensylvanicum in the playa wetlands(Southern Great Plains,USA)[J].Aquatic Botany,2002,74:97–108.
    [38]王君洁.溶藻细菌和溶藻粘细菌的分离及溶藻效果研究[D].武汉:华中师范大学,2007.
    [39]CASAMATTA D A,WICKSTROM C E.Sensitivity of two disjunct bacterioplankton communities to exudates from the cyanobacterium Microcystis aeruginosa Kützing[J].Microbial Ecology,2000,40(1):64–73.
    [40]TANG X,Li L,SHAO K,et al.Pyrosequencing analysis of free-living and attached bacterial communities in Meiliang Bay,Lake Taihu,a large eutrophic shallow lake in China[J].Canadian Journal of Microbiology,2014,61(1):22–31.
    [41]曾巾,杨柳燕,肖琳,等.湖泊氮素生物地球化学循环及微生物的作用[J].湖泊科学,2007,19(4):382–389.
    [42]贺纪正,张丽梅.氨氧化微生物生态学与氮循环研究进展[J].生态学报,2009,29(1):406–415.
    [43]GHIGLIONE J F,MEVEL G,PUJO–PAY M,et al.Diel and seasonal variations in abundance,activity,and community structure of particle-attached and free-living bacteria in NW Mediterranean Sea[J].Microbial Ecology,2007,54(2):217–231.
    [44]UNCLES R J,FRICKERS P E,EASTON A E,et al.Concentrations of suspended particulate organic carbon in the tidal Yorkshire Ouse River and Humber Estuary[J].Science of the Total Environment,2000,251(2000):233–242.
    [45]朱永青.淀山湖底泥氮磷营养盐释放及其影响因素研究[J].环境污染与防治,2014,36(5):70–77.
    [46]汪家权,孙亚敏,钱家忠,等.巢湖底泥磷的释放模拟实验研究[J].环境科学学报,2002,22(6):738–742.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700