用户名: 密码: 验证码:
2-DOF关节型机器人轨迹的PCH与PD协调控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:2-DOF Joint Robot Trajectory Control System Based on Port-Controlled Hamiltonian and PD Algorithm Coordinate Control
  • 作者:迟洁茹 ; 于海生 ; 杨杰 ; 牛欢 ; 张启杲
  • 英文作者:CHI Jie-ru;YU Hai-sheng;YANG Jie;NIU Huan;ZHANG Qi-gao;School of Automation;School of Electrical Engineering;Qingdao International Airport New Energy Development Co.Ltd;
  • 关键词:关节型机器人 ; 端口受控哈密顿 ; PD控制 ; 轨迹跟踪控制
  • 英文关键词:Joint Robot;;port-controlled Hamiltonian;;PD control;;trajectory tracking control
  • 中文刊名:JZDF
  • 英文刊名:Control Engineering of China
  • 机构:青岛大学自动化学院;青岛大学机电工程学院;青岛国际机场新能源发展有限公司;
  • 出版日期:2019-05-20
  • 出版单位:控制工程
  • 年:2019
  • 期:v.26;No.173
  • 基金:国家自然科学基金(61573203);; 山东省自然科学基金(ZR2016FM11)
  • 语种:中文;
  • 页:JZDF201905019
  • 页数:6
  • CN:05
  • ISSN:21-1476/TP
  • 分类号:120-125
摘要
针对二自由度关节型机器人轨迹跟踪控制系统单独使用一种控制方法难以实现快速高效、高精度的问题,设计了基于端口受控哈密顿(PCH)系统与传统PD算法协调控制的方案。端口受控哈密顿(PCH)控制用于确保系统的稳定性问题,传统PD控制主要用于提高系统响应的快速性问题。采用指数函数作为协调函数以实现协调控制策略,从而适应二自由度机器人的误差扰动。该系统既实现了位置信号的快速跟踪,又使机器人的输出信号控制在较高的误差精度范围内。经仿真验证表明,当机器人的机械系统存在建模误差时,采用端口受控哈密顿与传统PD算法协调控制器的二自由度关节型机器人位置控制系统有效的结合了两种控制方法的优点,该系统的动态性能与稳态性能优良,且能够快速消除误差。
        A hybrid coordinated control method based on Port-controlled Hamilton(PCH) and PD algorithm is designed to solve the problem that a single control method cannot effectively realize the trajectory tracking control of a 2-DOF joint robot. The Port-controlled Hamilton(PCH) control is used to ensure the stability of the system, and the traditional PD control is used to improve the response speed of the system. The exponential function is used as the coordination function to realize the coordinated control strategy of the 2-DOF joint robot,so as to adapt to the error interference of the 2-DOF joint robot. The control system not only achieves fast tracking control, but also makes the output signal of the robot in a higher error precision range. The simulation results show that, even if there are errors in the mechanical system modeling of the robot, the proposed coordinated control method can make the system not only have good dynamic and steady-state performance,but also eliminate errors quickly.
引文
[1]魏涛.SCARA机器人运动信号分析及应用[D].东南大学,2010.Wei Tao,Analysis and Application of Moving Signals of the SCARARobot[D],Southeast University,2010.
    [2]张弛.采用惯性测量单元的移动机器人轨迹跟踪方法研究[J].控制理论与应用,2013,30(3):398-403.Zhang C.Research on Trajectory Tracking Method of Mobile Robot Using Inertial Measurement Unit[J].Control Theory and Application,2013,30(3):398-403.
    [3]A.A.Al Rawi,S.A.Alobaidi,R.B.Ahmad and Y.Abid.Evaluating Effects of Chattering on the Sliding Mode System[J].IJCSIInternational Journal of Computer Science,2013,10(2):91-97.
    [4]侯明冬,刘金琨,田杰.欠驱动四旋翼飞行器全局轨迹跟踪滑模控制[J].控制工程,2016,23(6):928-932.HOU Ming-dong,LIU Jin-kun,TIAN Jie.Global Stability Trajectory Tracking of Underactuated Quadrotor[J].Control Engineering of China,2016,23(6):928-932.
    [5]孙炜,王耀南.模糊CMAC及其在机器人轨迹跟踪控制中的应用[J].控制理论与应用,2006,23(1):38-42.Sun W,Wang Y N.Fuzzy CMAC and Its Application in Robot Trajectory Tracking Control[J].Control Theory and Application,2006,23(1):38-42.
    [6]F.G.Rossomando,C.M.Soria.Discrete-time Sliding Mode Neuro-adaptive Controller for SCARA Robot Arm[J].Neural Computing&Applications,2017,28:3 837-3 850.
    [7]李砚浓,李汀兰,姜艺,等.基于RBF神经网络自适应PID四旋翼飞行器控制[J].控制工程,2016,23(3):378-382.Yan-Nong Li,Ting-Lan Li,Jiang Yi,et al.Adaptive PID Control of Quadrotor Based on RBF Neural Network[J].Control Engineering of China,2016,23(3):378-382.
    [8]何熊熊,秦贞华,张端,等.存在环境约束的机器人自适应迭代学习控制[J].控制理论与应用,2012,29(8):1 038-1 042.He X X,Qin Z H,Zhang D,et al.Robot Adaptive Iterative Learning Control with Environmental Constraints[J].Control Theory and Application,2012,29(8):1 038-1 042.
    [9]王玉振,程代展.广义哈密顿实现及其在基于能量的准Lyapunov函数构造中的应用[J].控制理论与应用,2002,19(4):511-515.Wang Y Z,Cheng D Z.Generalized Hamiltonian Realization and Its Application in Energy-based Quasi-Lyapunov Function Construction[J].Control Theory and Application,2002,19(4):511-515.
    [10]Liang C C,Yong H,Min W et al.Improved potential energy-shaping for port-controlled Hamiltonian systems[J].Control Theory and Application,2012,10(3):385-390.
    [11]穆效江,陈阳舟.多关节机器人的自适应模糊滑模控制[J].控制工程,2008,15(5):619-622.Mu X J,Chen Y Z.Adaptive Fuzzy Sliding Mode Control for Multijoint Robots[J].Control engineering,2008,15(5):619-622.
    [12]Haisheng Yu,Jinpeng Yu,Jin Liu,et al.Energy-shaping and L_2 Gain Disturbance Attenuation Control of Induction Motor[J].International Journal of Innovative Computing,Information and Control,2012,8(7):5 011-5 024.
    [13]于海生,赵克友,王海亮,等.基于负载观测器的永磁同步电机能量成型控制[J].系统工程与电子技术,2006,28(11):1 740-1 742,1 765.Yu H S,Zhao K Y,Wang H L,et al.Energy Control of Permanent Magnet Synchronous Motor Based on Load Observer[J].Systems Engineering and Electronics,2006,28(11):1 740-1 742,1 765.
    [14]Airong Wei,Yuzhen Wang.Disturbance Tolerance and H∞Control of Port-Controlled Hamiltonian Systems in the Presence of Actuator Saturation[J].International Journal of Control,Automation,and Systems,2014,12(2):309-315.
    [15]苏玉鑫,郑春红,Peter C.Miiller,等.非线性机械系统PID控制渐近稳定性分析[J].自动化学报,2008,34(12):1 544-1 548.Su Y X,Zheng C H,Peter C.Miiller,et al.Asymptotic Stability Analysis of PID Control for Nonlinear Mechanical Systems[J].Journal of Automation,2008,34(12):1 544-1 548.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700