用户名: 密码: 验证码:
基于Pierce振荡器架构的BAW传感器读出电路
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:BAW sensor readout circuit based on Pierce oscillator architecture
  • 作者:高杨 ; 尹汐漾 ; 韩宾 ; 吕军光
  • 英文作者:GAO Yang;YIN Xiyang;HAN Bin;L Junguang;Institute of Electronic Engineering,China Academy of Engineering Physics;School of Information Engineering,Southwest University of Science and Technology;State Key Laboratory of Particle Detection and Electronics,Institute of High Energy Physics,CAS;
  • 关键词:传感器 ; 体声波 ; 薄膜体声波谐振器 ; 读出电路 ; Pierce振荡器
  • 英文关键词:sensor;;bulk acoustic wave;;FBAR;;readout circuit;;Pierce oscillator
  • 中文刊名:SYCS
  • 英文刊名:China Measurement & Test
  • 机构:中国工程物理研究院电子工程研究所;西南科技大学信息工程学院;中国科学院高能物理研究所核探测与核电子学国家重点实验室;
  • 出版日期:2017-09-30
  • 出版单位:中国测试
  • 年:2017
  • 期:v.43;No.230
  • 基金:国家自然科学基金(61574131);; 中国工程物理研究院超精密加工技术重点实验室基金(2014ZA001);; 核探测与核电子学国家重点实验室开放课题基金(2016KF02);; 西南科技大学研究生创新基金(16YCX103)
  • 语种:中文;
  • 页:SYCS201709015
  • 页数:7
  • CN:09
  • ISSN:51-1714/TB
  • 分类号:89-95
摘要
薄膜体声波谐振器(FBAR)不仅能作为手机射频前端的滤波器,还具有充当传感器表头的潜力。为实现对体声波(BAW)传感器输出射频信号的检测,设计一种基于Pierce振荡器的BAW传感器读出电路。读出电路采用双路差分方式,将体声波谐振器构成两路振荡器,一路作为参考电路用于检测外界环境等因素的干扰,另一路作为传感电路用于检测待测物理量。两路振荡器信号通过混频滤波得到由待测物理量引起的谐振频率偏移。然后通过放大与整形将模拟信号转换为数字信号,最后送入FPGA进行频率检测。以一个2 GHz的体声波质量传感器为例,给出电路各模块的设计方法,经各模块仿真以及信号转换电路的实验验证,电路可检测的最大谐振频率偏移量为99 MHz。
        Film bulk acoustic resonator(FBAR) can not only be used as a filter for the RF front end of a mobile phone, but also has the potential as a sensor head. In order to realize the detection of the RF signal output from the BAW sensor, a BAW sensor readout circuit based on Pierce oscillator is designed. This paper uses the differential measurement method, which using two BAWRs to constitute two oscillators, one as a reference circuit to detect interfere factors and the other as a measurement circuit to detect physical quantity to be measured. The resonant frequency offset caused by the physical quantity to be measured is obtained by mixing and filtering the two oscillator signals. Then, the analog signal is converted to digital signal by amplifying and shaping. Finally the signal output from shaping circuit is sent to FPGA for frequency detection. Taking 2 GHz bulk acoustic wave sensor as an example, with the design method of each circuit module given in this paper. Through the simulation of each circuit module and the experimental verification of the signal conversion circuit, the maximum detectable resonant frequency offset is 99 MHz of the circuit.
引文
[1]LAKIN K M,WANG J S.Acoustic bulk wave composite resonators[J].Applied Physics Letters,1981,38(3):125-127.
    [2]JONHSTON M L,KYMISSIS I,SHEPARD K L.FBARCOMS oscillator array for mass-sensing applications[J].IEEE Sensors Journal,2010,10(6):1042-1047.
    [3]QIU X,ZHU J,OILER J,et al.Film bulk acousticwave resonator based ultraviolet sensor[J].Applied Physics Letters,2009,15(9):1517-1519.
    [4]GABL R,FEUCHT H D,ZEININGER H,et al.First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles[J].Biosensors&Bioelectronics,2004,19(6):615-620.
    [5]LAKIN K M.A review of thin-film resonator technology[J].Microwave&Magazine IEEE,2003,4(4):61-67.
    [6]赵士恒.FBAR无限传感器集成技术研究[D].杭州:浙江大学,2010.
    [7]秦杰.薄膜体声波传感器检测电路的设计与研究[D].武汉:湖北大学,2013.
    [8]RUBY R C,FLOWER G M,LARSON III J D,et al.Apparatus and method for detecting a target environmental variable that employs film-bulk acoustic wave resonator oscillators:U.S.Patent 7358651[P].2008-4-15.
    [9]李延辉,胡东亮,潘英锋.混频器设计中的关键技术研究[J].现代电子技术,2008,31(5):95-98.
    [10]尹汐漾,高杨,韩宾,等.体声波谐振器质量负载等效电感的量化方法[J].压电与声光,2016,38(6):868-872.
    [11]LEESON D B.A simple model of feedback oscillator noise[J].Proceedings of the IEEE,1966,54(2):329-330.
    [12]杨保顶.数字式温补晶体振荡器中的压控振荡电路的设计[D].成都:电子科技大学,2009.
    [13]NELSON A,HU J,KAITILA J,et al.A 22μW,2.0 GHz FBAR oscillator[C]∥IEEE Radio Frequency Integrated Circuits Symposium.IEEE,2011.
    [14]HU J,CALLAGHAN L,RUBY R,et al.A 50×10-6600 MHz frequency reference utilizing the series resonance of an FBAR[C]∥IEEE Radio Frequency Integrated Circuits Symposium.IEEE,2010.
    [15]OTIS B P,RABAEY J M.A 300μW 1.9 GHz CMOS oscillator utilizing micromachined resonators[J].IEEE Journal of Solid-State Circuits,2003,38(7):1271-1274.
    [16]ZHANG F,GILBERT S R,BI F,et al.A 2.6 GHz 25fs jitter differential chip scale oscillator that is<1 mm2in area and 0.25 mm tall[C]∥IEEE International Frequency Control Symposium.IEEE,2012.
    [17]王艳.反馈式振荡器相位噪声的理论分析及优化技术研究[D].成都:电子科技大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700