用户名: 密码: 验证码:
北京妙峰山林场地表潜在火行为及燃烧性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on surface potential fire behavior and combustion of Miaofeng Mountain Forest Farm in Beijing
  • 作者:李连强 ; 牛树奎 ; 陈锋 ; 陶长森 ; 陈羚 ; 张鹏
  • 英文作者:Li Lianqiang;Niu Shukui;Chen Feng;Tao Changsen;Chen Ling;Zhang Peng;College of Forestry, Beijing Forestry University;Experimental Forest Farm of Beijing Forestry University;
  • 关键词:小班 ; 地表可燃物 ; 主成分分析 ; 潜在火行为 ; 燃烧性
  • 英文关键词:small class;;surface fuel;;principal component analysis;;potential fire behavior;;forest combustion
  • 中文刊名:BJLY
  • 英文刊名:Journal of Beijing Forestry University
  • 机构:北京林业大学林学院;北京林业大学实验林场;
  • 出版日期:2019-03-15
  • 出版单位:北京林业大学学报
  • 年:2019
  • 期:v.41
  • 基金:国家林业局林业科技推广项目(2015-04)
  • 语种:中文;
  • 页:BJLY201903007
  • 页数:10
  • CN:03
  • ISSN:11-1932/S
  • 分类号:62-71
摘要
【目的】森林燃烧性是森林被引燃的难易程度和着火后的火行为特征,分析可燃物火行为及燃烧性为妙峰山林场地表可燃物管理、火险区划及森林防火提供依据。【方法】利用林场内12种主要森林类型调查数据和二类清查资料,选择地表潜在火行为、火环境、可燃物理化性质及床层结构4大类指标,采用主成分分析和聚类分析法计算104个小班地表可燃物燃烧性并对地表可燃物燃烧性指数CI进行了排序。【结果】(1)无风条件下104个小班中,各优势树种小班地表潜在火行为有以下规律:针叶林普遍较大且地表火强度达到2 000 kW/m以上、蔓延速度3 m/min以上、火焰高度1.5 m以上,灌木林次之地表火强度700~2 000 kW/m、蔓延速度1.5~3 m/min、火焰高度1~1.5 m,阔叶林较小地表火强度700 kW/m以下、蔓延速度1.5 m/min以下、火焰高度1 m以下。(2)主成分分析表明,地表可燃物燃烧性与火行为指数正相关,与海拔因素负相关,与含水率负相关,与有效负荷量和床层高度正相关。(3)聚类分析表明,小班地表可燃物燃烧性指数CI分为5个等级:高燃烧性(Ⅰ)、较高燃烧性(Ⅱ)、可燃烧性(Ⅲ)、较低燃烧性(Ⅳ)、低燃烧性(Ⅴ)。各燃烧性等级的小班优势树种分别为:油松、落叶松、侧柏等针叶林,位于林场东南、西北部;油松、落叶松、侧柏与栓皮栎、五角枫等针阔混交林,主要位于林场西北部;栓皮栎、黄波罗、五角枫等阔叶纯林,集中于林场东南、西北部;山桃、荆条等灌木林及少数栓皮栎林、黄波罗等阔叶混交林,分布在林场东北部;荆条、山杏、鼠李、绣线菊等灌木,主要位于林场西南和中部。【结论】以油松、落叶松等针叶林为主的小班地表潜在火行为普遍较大,极易形成高强度地表火,易发生树冠火;燃烧性受到火环境、火行为和可燃物的影响,特别是可燃物有效负荷量、床层高度、海拔和含水率因子;高燃烧性和较高燃烧性小班多数位于林场北部、西北部,要注重对不同燃烧等级小班分类管理、科学巡护。
        [Objective] Forest combustion is the difficulty degree of igniting a forest and the characteristics of fire behavior after a fire. Analysis of combustible fire behavior and combustion can provide a scientific basis for the forest fire prevention management and fire zoning under the forest of Miaofeng Mountain Forest Farm. [Method] Through the investigation of surface combustibles of 12 major forest types in farm,combined with the continuous forest resources, this paper selects four categories of indicators: surface fire behavior, fire environment, flammable physical properties and bed structure to calculate the combustibility of 104 small class surface fuels by principal component analysis and cluster analysis, and the surface combustibles combustion index(CI) and ranking were calculated. [Result](1) In 104 small classes, the potential fire behavior of each dominant tree species in small classes was from large to small: coniferous forests was generally larger and the surface fire intensity reached 2 000 kW/m, the spread speed was above3 m/min, and the flame height was over 1.5 m. The shrub was second, and its surface fire intensity was 700-2 000 kW/m, the spreading speed is 1.5-3 m/min, and the flame height is 1-1.5 m. The broadleaved was the lowest and it had a surface fire intensity of 700 kW/m or less, a propagation speed of 1.5 m/min or less, and a flame height of 1 m or less.(2) Principal component analysis showed that, the fire behavior index was directly proportional to the combustion, and the altitude factor was inversely proportional to the combustion.The water content was inversely proportional to the combustion. The effective load and the bed height were directly proportional to the combustion.(3) Cluster analysis showed that, the small class surface fuel combustion index(CI) was divided into five grades: high combustion(Ⅰ), higher combustion(Ⅱ),combustion(Ⅲ), lower combustion(Ⅳ), low combustion(Ⅴ). Small-shift dominant species of each flammability class, such as Pinus tabuliformis, Larix gmelinii and Platycladus orientalis, distributed in the southeastern and northwestern of the forest farm. Mixed forest of the Pinus tabuliformis, Platycladus orientalis and Quercus variabilis, Acer monoMaxim. mainly located in the northwestern corner of the forest farm. Broadleaved pure forest, such as cork oak, Quercus variabilis, Phellodendron amurense, Acer mono,which were concentrated in the southeastern and northwestern of the forest farm. Mountain peach and shrubs such as Vitex negundo and a few broadleaved mixed forests, such as Quercus variabilis, Juglans mandshurica, which were distributed in the northwestern forest farm. The shrubs such as Vitex negundo, Armeniaca sibiricat, Rhamnus davurica and Spiraea salicifolia, mainly located in the southwestern and central forest farm. [Conclusion] The potential fire behavior of small-scale of Pinus tabuliformis and Larix gmelinii forests is generally large, and it is easy to form high-intensity surface fires, which are prone to canopy fires.Combustibility is affected by fire environment, fire behavior and combustibles, especially combustible payload, bed height, altitude and moisture content factors. Small classes of the higher-combustion and highcombustion are located in the north and northwest of the forest farm. It is necessary to pay attention to the small-class classification management and scientific patrol of different combustion levels.
引文
[1]单延龙,张敏,于永波.森林可燃物研究现状及发展趋势[J].北华大学学报(自然科学版),2004,5(3):264-369.Shan Y L,Zhang M,Yu Y B.Current situation and developing trend of the study on forest fuel[J].Journal of Beihua University(Natural Science),2004,5(3):264-369.
    [2]Gill A M,Zylstra P.Flammability of Australian forests[J].Australian Forestry,2005,68(2):87-93.
    [3]胡乙山,张立,唐贺统.森林可燃物及其燃烧特性研究[J].防护林科技,2005(3):26-27.Hu Y S,Zhang L,Tang H T.Study on forest fuel and its combustibility[J].Protection Forest Science&Technology,2005(3):26-27.
    [4]王秋华,肖慧娟,徐盛基,等.滇中安宁“3·29”重大森林火灾火烧迹地灌木林的燃烧性研究[J].安全与环境学报,2016,16(1):138-141.Wang Q H,Xiao H J,Xu S J,et al.Retrogressive study and analysis of the burning features of the shrubs in the fire taking place on 29 March,2006,in Anning,Yunnan[J].Journal of Safety&Environment,2016,16(1):138-141.
    [5]解国磊,丁新景,马风云,等.鲁中山区主要森林类型易燃可燃物垂直分布及其燃烧性[J].西北林学院学报,2016,31(1):158-163.Xie G L,Ding X J,Ma F Y,et al.Vertical distribution of the forest flammable fuel loads and combustion of the main forest types in mountainous area of Shandong[J].Journal of Northwest Forestry University,2016,31(1):158-163.
    [6]Zylstra P J.Flammability dynamics in the Australian Alps[J].Austral Ecology,2018,43(5):579-591.
    [7]舒立福,张小罗,戴兴安,等.林火研究综述(Ⅱ):林火预测预报[J].世界林业研究,2003,16(4):34-37.Shu L F,Zhang X L,Dai X A,et al.Forest fire research(Ⅱ):fire forecast[J].World Forestry Research,2003,16(4):34-37.
    [8]杨璐嘉,王成武,唐章英,等.基于GIS的普达措国家森林公园火险区划分析[J].企业技术开发,2015,34(28):25-28.Yang L J,Wang C W,Tang Z Y,et al.Analysis of Pudacuo National Forest Park fire zoning based on GIS[J].Technological Development of Enterprise,2015,34(28):25-28.
    [9]黄宝华,张华,孙治军.基于层次分析(AHP)的山东林火风险区划研究[J].火灾科学,2014,23(4):225-232.Huang B H,Zhang H,Sun Z J.Shandong forest fire danger division research based on analytic hierarchy process(AHP)[J].Fire Safety Science,2014,23(4):225-232.
    [10]李小川,李兴伟,王振师,等.广东森林火灾的火源特点分析[J].中南林业科技大学学报,2008,28(1):89-92.Li X C,Li X W,Wang Z S,et al.Analysis of fire source characteristics of Guangdong forest fires[J].Journal of Central South University of Forestry&Technology,2008,28(1):89-92.
    [11]张尚印,祝昌汉,陈正洪.森林火灾气象环境要素和重大林火研究[J].自然灾害学报,2000,9(2):111-117.Zhang S Y,Zhu C H,Chen Z H.Research on forest fire meteorological environmental elements and large forest fires[J].Journal of Natural Disasters,2000,9(2):111-117.
    [12]覃先林,张子辉,易浩若,等.一种预测森林可燃物含水率的方法[J].火灾科学,2001,10(3):159-162.Qin X L,Zhang Z H,Yi H R,et al.A methodology to predict the moisture of forest fuels[J].Fire Safety Science,2001,10(3):159-162.
    [13]李旭,王秋华,张雨瑶.滇中火灾高发区15种木本植物燃烧性研究[J].林业调查规划,2016,41(2):62-68.Li X,Wang Q H,Zhang Y Y.Studies on combustibility of 15woody plants in the high fire risk area of central Yunnan[J].Forest Inventory&Planning,2016,41(2):62-68.
    [14]王月,高国平,周绍砚,等.辽宁西北部地区森林地被可燃物及其燃烧性的研究[J].沈阳农业大学学报,2006,37(5):716-719.Wang Y,Gao G P,Zhou S Y,et al.Combustible ground cover and combustibility of forest in Northwest Liaoning Province[J].Journal of Shenyang Agricultural University,2006,37(5):716-719.
    [15]李艳芹,胡海清.帽儿山主要树种燃烧性分析与排序[J].东北林业大学学报,2010,38(5):34-36.Li Y Q,Hu H Q.Sequence of combustibility of principal tree species in Maoershan Mountain Area,Heilongjiang Province[J].Journal of Northeast Forestry University,2010,38(5):34-36.
    [16]Fréjaville T,Curt T,Carcaillet C.Tree cover and seasonal precipitation drive understorey flammability in alpine mountain forests[J].Journal of Biogeography,2016,43(9):1869-1880.
    [17]苏文静,张思玉,何诚,等.昆明地区9种藤本植物活叶片的燃烧性[J].林业资源管理,2017(6):120-123.Su W J,Zhang S Y,He C,et al.Combustion characteristics of live leaves of 9 lianas species in Kunming,Yunnan Province[J].Forest Resources Management,2017(6):120-123.
    [18]梁瀛,李吉玫,赵凤君,等.天山中部天山云杉林地表可燃物载量及其影响因素[J].林业科学,2017,53(12):153-160.Liang Y,Li J M,Zhao F J,et al.Surface fuel loads of Tianshan Spruce forests in the central Tianshan Mountains and the impact factors[J].Scientia Silvae Sinicae,2017,53(12):153-160.
    [19]牛树奎.北京山区主要森林类型火行为与可燃物空间连续性研究[D].北京:北京林业大学,2012.Niu S K,Fire behavior and fuel spatial continuity of major forest types in the Mountainous Area,Beijing[M].Beijing:Beijing Forestry University,2012.
    [20]牛树奎,贺庆棠,陈锋,等.北京山区主要针叶林可燃物空间连续性研究:可燃物水平连续性与树冠火蔓延[J].北京林业大学学报,2012,34(3):1-7.Niu S K,He Q T,Chen F,et al.Spatial continuity of fuels in major coniferous forests in Beijing mountainous area:fuel vertical continuity and crown fire occurrence[J].Journal of Beijing Forestry University,2012,34(3):1-7.
    [21]Wagner C E V.Conditions for the start and spread of crown fire[J].Revue Canadienne De Recherche Forestière,1977,7(1):23-34.
    [22]Rothermel R C.A mathematical model for predicting fire spread in wildland fuels.[M].Ogden:Usda Forest Service General Technical Report,1972.
    [23]单延龙,舒立福,王洪伟,等.Rothermel火蔓延模型特征参数的解析[J].森林防火,2003(1):22-25.Shan Y L,Shu L F,Wang H W,et al.Analysis of characteristic parameters of Rothermel’s fire spread model[J].Forest Fire Prevention,2003(1):22-25.
    [24]Byram G M.Combustion of forest fuels[C]//Davis K P.Forest fire:control and use.New York:McGraw-Hill Book Company,1959:77-84.
    [25]夏智武.森林地表可燃物燃烧性评价研究[D].北京:中国林业科学研究院,2016.Xia Z W.Study on evaluation of forest surface fuel flammability[D].Beijing:Chinese Academy of Forestry,2016.
    [26]宋叙言,沈江.基于主成分分析和集对分析的生态工业园区生态绩效评价研究:以山东省生态工业园区为例[J].资源科学,2015,37(3):546-554.Song X Y,Shen J.The ecological performance of eco-industrial parks in Shandong based on principal component analysis and set pair analysis[J].Resources Science,2015,37(3):546-554.
    [27]祝必琴,黄淑娥,田俊,等.亚热带季风区不同林型可燃物理化性质及燃烧性研究[J].江西农业大学学报,2011,33(6):1149-1154.Zhu B Q,Huang S E,Tian J,et al.A study on the physicalchemical properties and flammability of different forest types in semi-tropical monsoon area[J].Acta Agriculturae Universitatis Jiangxiensis,2011,33(6):1149-1154.
    [28]Hoffman C M,Morgan P,Mell W,et al.Surface fire intensity influences simulated crown fire behavior in lodgepole pine forests with recent mountain pine beetle caused tree mortality[J].Forest Science,2013,59(4):390-399.
    [29]王晓丽.北京山区森林燃烧性研究[D].北京:北京林业大学,2010.Wang X L.Study on combustibility of forests in Beijing Mountain Area[D].Beijing:Beijing Forestry University,2010.
    [30]王晓丽,牛树奎,阚振国.北京地区主要树种理化性质研究及易燃性初步分析[J].林业资源管理,2008(4):83-88.Wang X L,Niu S K,Kan Z G.The preliminary analysis of the characteristics and flammability of main tree species in Beijing Area[J].Forest Resources Management,2008(4):83-88.
    [31]刘艳红,马炜.长白落叶松人工林可燃物碳储量分布及燃烧性[J].北京林业大学学报,2013,35(3):32-38.Liu Y H,Ma W.Carbon distribution and combustibility of fuels in Larix olgensis plantations[J].Journal of Beijing Forestry University,2013,35(3):32-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700