用户名: 密码: 验证码:
金乌贼微卫星标记开发及两个野生群体遗传多样性比较
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Isolation of microsatellite markers and genetic diversity of wild populations in golden cuttlefish Sepia esculenta
  • 作者:王鹤 ; 李战军 ; 王亮 ; 王增东 ; 贺加贝 ; 刘永胜
  • 英文作者:WANG He;LI Zhan-jun;WANG Liang;WANG Zeng-dong;HE Jia-bei;LIU Yong-sheng;Yantai Marine Economic Research Institute;Shandong Hydrobios Resources Conservation and Management Center;Shandong Anyuan Aquaculture Limited Liability Company;
  • 关键词:金乌贼 ; 微卫星标记 ; 野生群体 ; 遗传多样性
  • 英文关键词:Sepia esculenta;;microsatellite locus;;wild population;;genetic diversity
  • 中文刊名:DLSC
  • 英文刊名:Journal of Dalian Ocean University
  • 机构:烟台市海洋经济研究院;山东省水生动物资源养护管理中心;山东安源水产股份有限公司;
  • 出版日期:2019-07-17 15:06
  • 出版单位:大连海洋大学学报
  • 年:2019
  • 期:v.34
  • 基金:山东省现代农业产业技术体系贝类产业创新团队项目(SDAIT-14-11)
  • 语种:中文;
  • 页:DLSC201904004
  • 页数:10
  • CN:04
  • ISSN:21-1575/S
  • 分类号:23-32
摘要
为进一步了解金乌贼Sepia esculenta野生群体遗传多样性水平,采用磁珠富集法从金乌贼基因组中开发了微卫星标记,并应用青岛(QD)金乌贼野生群体对其多态性进行评价,进而比较了青岛和长江口(CJK)两个野生群体的遗传差异。结果表明:开发标记的种群遗传学评价显示,在269个克隆子中,有192个含有微卫星序列(71.38%),基于该序列设计85对引物,其中20对通过筛选,完美型占60%,非完美型占10%,复合型占30%;经群体验证,表观等位基因数(A)为2~17不等,平均为8.15,观测杂合度(H_O)分布范围为0.146~0.936,平均为0.630,期望杂合度(H_E)分布范围为0.172~0.930,平均为0.702;其中5个位点不符合哈迪—温伯格(Hardy-Weinberg)平衡预期,存在零等位基因可能是其偏离平衡的原因;应用本研究开发的引物对2个近源种扩增,开发的20个标记位点中有6个在针乌贼Sepia andreana中表现为多态,4个位点在曼氏无针乌贼Sepiella maindroni中表现为多态;应用开发的11个位点对青岛和长江口两个野生群体进行遗传差异分析显示,所有位点中,青岛群体共检测到163个等位基因,长江口群体共检测到152个等位基因,每个位点的等位基因数为5~28和6~26不等,平均等位基因数分别为14.818和13.818;青岛群体独有等位基因19个,观测杂合度分布范围为0.250~0.936,平均为0.731,期望杂合度分布范围为0.265~0.930,平均为0.771,多态信息含量为0.223~0.946,平均为0.746;长江口群体独有等位基因8个,观测杂合度分布范围为0.500~0.896,平均为0.731,期望杂合度分布范围为0.623~0.960,平均为0.857,多态信息含量为0.614~0.948,平均为0.845;群体间遗传分化较弱(F_(st)值为0.032 5),群体分配分析结果表明,两个种群中所有个体正确分配到各自种群的概率分别为86.4%和84.0%。研究表明,本试验中开发的微卫星标记位点多样性水平略低于前人的研究,但有一定的跨种扩增通用性,长江口群体多样性水平略高于青岛群体,尽管两个群体间遗传分化程度不高,但存在明显差异。
        Microsatellite loci were isolated and characterized through the magnetic beads enrichment method, and polymorphism evaluation and genetic differences were investigated in two wild populations(Qingdao, QD and Yangtze River Delta, CJK) of golden cuttlefish Sepia esculenta along coastal waters in China to explore the genetic diversity of the species. The population genetic evaluation of microsatellite markers indicated that in 269 clones 192 clones contained microsatellite sequences(71.38%), and 85 pairs of primers were designed based on these sequences, among which 20 pairs were clearly amplified and shown to be polymorphic, perfect SSR(accounting for 60%), imperfect SSR(10%), and compound SSR(30%). The numbers of alleles per locus were ranged from 2 to 17(average 8.15), the observed from 0.146 to 0.936(average 0.630)and expected heterozygosities from 0.172 to 0.930(mean 0.702). Fifteen of twenty loci was conformed to Hardy-Weinberg equilibrium and no significant linkage disequilibrium was found between any pair of loci after Bonferroni correction. Six and four loci displayed successful cross-species amplification in two other closely related species, Sepia andreana and Sepiella maindroni. A total of 163 alleles were detected in QD population, and 152 alleles in CJK population in 11 polymorphic loci analysis of population genetic diversity. The number of alleles was ranged from 5 to 28, with average allele number of 14.818, and 6 to 26, with average allele number of 13.818. There were 19 unique alleles in QD population,with observed heterozygosity from 0.250 to 0.936, with an average of 0.731, expected heterozygosity from 0.265 to 0.930 with an average of 0.771, polymorphic information content(PIC) from 0.223 to 0.946 with an average 0.746. There were 8 unique alleles in CJK population, with observation heterozygosity from 0.500 to 0.896(average 0.731), expected heterozygosity from 0.623 to 0.960(average 0.857), and PIC from 0.614 to 0.948 with an average 0.845. The genetic differentiation value(F_(st)) of 0.032 5 was observed between the populations. The population distribution analysis revealed that the probability that all individuals in the two populations were correctly assigned to their respective populations was 86.4% in QD population and 84.0% in CJK population. The findings indicated that the level of diversity of microsatellite loci developed in this study was slightly lower than that in previous studies, with a certain cross-species amplification rate. Population diversity was higher in CJK than that in QD, though low degree of genetic differentiation between the two populations, with significant differences.
引文
[1] 李嘉泳.金乌贼Sepia esculenta Hoyle在黄渤海的结群生殖和洄游[J].山东海洋学院学报,1963(2):69-108.
    [2] Okutani T.Cuttlefish and Squids of the World in Color[M].Tokyo:National Cooperative Association of Squid Processors,1995:43.
    [3] 郝振林,张秀梅,张沛东.金乌贼的生物学特性及增殖技术[J].生物学杂志,2007,26(4):601-606.
    [4] 刘莉莉,万荣,段媛媛,等.山东省海洋渔业资源增殖放流及其渔业效益[J].海洋湖沼通报,2008(4):91-98.
    [5] 单彬彬,宋娜,刘淑德,等.基于线粒体COI基因序列的金乌贼群体遗传学研究[J].中国海洋大学学报:自然科学版,2017,47(5):50-56.
    [6] 卢晓,董天威,刘沛栋,等.山东省金乌贼增殖放流回顾与思考[J].齐鲁渔业,2018,35(1):42-46.
    [7] 汪金海,韩松,郑小东,等.金乌贼(Sepia esculenta)繁殖模式的分子学鉴定[J].海洋与湖沼,2017,48(1):184-189.
    [8] 韦柳枝,高天翔,韩志强,等.日照近海金乌贼生物学的初步研究[J].中国海洋大学学报:自然科学版,2005,35(6):923-928.
    [9] 雷舒涵.金乌贼胚胎与幼体发育生物学研究[D].青岛:中国海洋大学,2013.
    [10] 金洋,薛张芝,张洪超,等.金乌贼肌肉中三甲胺脱甲基酶的分离纯化及酶学性质[J].水产学报,2017,41(6):845-853.
    [11] 刘长琳,赵法箴,陈四清,等.金乌贼胚胎发育阶段主要生化成分的变化[J].中国海洋大学学报:自然科学版,2016,46(11):62-72.
    [12] 刘长琳,阮飞腾,秦搏,等.野生金乌贼成体肌肉的营养成分分析及评价[J].海洋科学,2016,40(8):42-48.
    [13] 刘长琳,刘思玮,赵法箴,等.金乌贼(Sepia esculenta)早期发育阶段相关酶活性的变化[J].渔业科学进展,2016,37(6):105-109.
    [14] 周维武.金乌贼(Sepia esculenta Hoyle)人工孵化与培育技术[J].现代渔业信息,2007,22(11):27-29.
    [15] 陈四清,刘长琳,庄志猛,等.饵料、盐度对金乌贼幼体生长的影响[J].渔业现代化,2008,35(6):23-25,32.
    [16] 刘长琳,庄志猛,陈四清,等.金乌贼亲体驯养与繁殖特性研究[J].渔业现代化,2009,36(2):34-42.
    [17] Zheng Xiaodong,Zhao Jiaming,Xiao Shu,et al.Isozymes analysis of the golden cuttlefish Sepia esculenta (Cephalopoda:Sepiidea)[J].Journal of Ocean University of China,2004,3(1):48-52.
    [18] Wei Liuzhi,Gao Tianxiang,Zhang Xiumei.Isozymes analysis of Sepia esculenta (Cephalopoda:Sepiidea)[J].Journal of Fishery Sciences of China,2005,12(5):449-555.
    [19] Zheng X D,Ikeda M,Kong L F,et al.Genetic diversity and population structure of the golden cuttlefish,Sepia esculenta (Cephalopoda:Sepiidea) indicated by microsatellite DNA variations[J].Marine Ecology,2009,30,448-454.
    [20] Zheng Xiaodong,Ikeda M,Barinova A,et al.Isolation and characterization of microsatellite DNA loci from the golden cuttlefish,Sepia esculenta Hoyle (Cephalopoda)[J].Molecular Ecology Notes,2007,7(1):40-42.
    [21] 郑小东,许然,池田実,等.基于COI基因的西北太平洋金乌贼种群遗传学研究[J].中国海洋大学学报:自然科学版,2017,47(9):55-61.
    [22] 孙孝文,张晓锋,赵莹莹,等.水产生物微卫星标记技术研究进展及其应用[J].中国水产科学,2008,15(4):689-703.
    [23] 徐浩,鲁翠云,孙孝文.利用164个微卫星标记分析镜鲤家系的遗传多样性和经济性状[J].大连海洋大学学报,2013,28(3):247-253.
    [24] 董颖,杨瑞,姜志强,等.微卫星标记在人工养殖小体鲟种群的数据分析方法比较和遗传多样性分析[J].大连海洋大学学报,2016,31(5):516-521.
    [25] 李云霞,李娇,丁君.等.基于微卫星标记的刺参群体遗传结构分析及与经济性状的相关性研究[J].大连海洋大学学报,2013,28(5):438-444.
    [26] Sambroo J,Fitch E F,Maniatis T.Molecular Cloning:A Laboratory Manual[M].2nd ed.Cold Spring Harbor,N.Y.:Cold Spring Harbor Laboratory Press,1989:463-470.
    [27] Raymond M,Rousset F.Genepop (version 1.2):population genetics software for exact tests and ecumenicism[J].Journal of Heredity,1995,86(3):248-249.
    [28] Weber J L.Informativeness of human (dC-dA)n·(dG-dT)n polymorphisms[J].Genomics,1990,7(4):524-530.
    [29] Beadell J S,Hyseni C,Abila P P,et al.Phytogeography and population structure of Glossina fuscipes fuscipes in Uganda:implications for control of testes[J].PLoS Neglected Tropical Diseases,2010,4(3)e636.
    [30] 林婷婷.大刺鳅(Mastacembelus armatus)微卫星标记开发及野生群体遗传多样性分析[D].广州:广州大学,2017.
    [31] 王洋坤,胡艳,张天真.RAD—seq技术在基因组研究中的现状及展望[J].遗传,2014,36(1):41-49.
    [32] Barchi L,Lanteri S,Portis E,et al.Identification of SNP and SSR markers in eggplant using RAD tag sequencing[J].BMC Genomics,2011,12:304.
    [33] Hohenlohe P A,Bassham S,Etter P D,et al.Population genomics of parallel adaptation in three spine stickleback using sequenced RAD tags[J].Plos Genetics,2010,6(2):e1000862.
    [34] 韩承慧,马海涛,姜海滨,等.许氏平鲉(Sebastes schlegeli)微卫星标记开发及野生、养殖群体遗传多样性分析[J].海洋与湖沼,2016,47(1):213-220.
    [35] Andrews K R,Luikart G.Recent novel approaches for population genomics data analysis[J].Molecular Ecology,2014,23(7):1661-1667.
    [36] Hand B K,Lowe W H,Kovach R P,et al.Landscape community genomics:understanding eco-evolutionary processes in complex environments[J].Trends in Ecology & Evolution,2015,30(3):161-168.
    [37] 常诚,韩慧宗,王腾腾,等.单环刺螠(Urechis unicinctus)微卫星标记开发及5个地理种群遗传结构分析[J].海洋与湖沼,2017,48(3):498-507.
    [38] 翟云,吴仁协,牛素芳,等.采用高通量技术开发花鲈二碱基重复微卫星标记[J/OL].基因组学与应用生物学,2018[2018-09-28].http://www.cnki.net/KCMS/detail/45.1369.Q.2018 0928.0959.002.html
    [39] 熊飞,刘红艳,段辛斌,等.长薄鳅基因组四碱基重复微卫星的分离及序列特征分析[J].华中师范大学学报:自然科学版,2013,47(6):824-829.
    [40] 吴雪萍,马海涛,冯艳微,等.缢蛏(Sinonovacula constricta)微卫星标记的分离及近缘物种通用性[J].海洋与湖沼,2014,45(6):1330-1337.
    [41] 高焕,于飞,栾生,等.中国明对虾基因组微卫星重复单元类型与其多态性关系[J].水生生物学报,2009,33(1):94-102.
    [42] 廖小林.长江流域几种重要鱼类的分子标记筛选开发及群体遗传分析[D].武汉:中国科学院水生生物研究所,2006.
    [43] 蔡磊,陈小曲,郑伟强,等.诸氏鲻虾虎鱼多态性微卫星标记的开发及评价[J].中国实验动物学报,2015,23(1):57-62.
    [44] Shaw P W,Pierce G J,Boyle P R.Subtle population structuring within a highly vagile marine invertebrate,the veined squid Loligo forbesi,demonstrated with microsatellite DNA markers[J].Molecular Ecology,1999,8(3):407-417.
    [45] Maxwell M R,Buresch K,Hanlon R T.Pattern of inheritance of microsatellite loci in the squid Loligo pealeii (Mollusca:Cephalopoda)[J].Marine Biotechnology,2002,2(6):517-521.
    [46] Murphy J M,Balguerías E,Key L N,et al.Microsatellite DNA markers discriminate between two Octopus vulgaris (Cephalopoda:Octopoda) fisheries along the northwest African coast[J].Bulletin of Marine Science,2002,71(1):545-553.
    [47] Adcock G J,Shaw P W,Rodhouse P G,et al.Microsatellite analysis of genetic diversity in the squid Illex argentinus during a period of intensive fishing[J].Marine Ecology,1999,187:171-178.
    [48] Shaw P W,Arkhipkin A I,Adcock G J,et al.DNA markers indicate that distinct spawning cohorts and aggregations of Patagonian squid,Loligo gahi,do not represent genetically discrete subpopulations[J].Marine Biology,2004,144(5):961-970.
    [49] Dillane E,Galvin P,Coughlan J,et al.Genetic variation in the lesser flying squid Todaropsis eblanae (Cephalopoda,Ommastrephidae) in east Atlantic and Mediterranean waters[J].Marine Ecology Progress Series,2005,292:225-232.
    [50] Wolfram K,Mark F C,John U,et al.Microsatellite DNA variation indicates low levels of genetic differentiation among cuttlefish (Sepia officinalis L.) populations in the English Channel and the Bay of Biscay[J].Comparative Biochemistry and Physiology,2006,1(3):375-383.
    [51] Pérez-Losada M,Guerra A,Carvalho G R,et al.Extensive population subdivision of the cuttlefish Sepia officinalis (Mollusca:Cephalopoda) around the Iberian Peninsula indicated by microsatellite DNA variation[J].Heredity,2002,89(6):417-424.
    [52] Nei M.Molecular Evolutionary Genetics[M].New York:Columbia University Press,1987.
    [53] Leberg P L.Estimating allelic richness:effects of sample size and bottlenecks[J].Mol Ecol,2002,11(11):2445-2449.
    [54] Wtight S.Ecolution and the genetics of populations:variability within and among natural populations[M].Chicago:University of Chicago Press,1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700