用户名: 密码: 验证码:
金属有机框架固定化酶及其在环境中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Immobilization of enzymes on metal-organic frameworks and its application in environmental fields
  • 作者:解婷婷 ; 迟莉娜 ; 刘瑞婷 ; 王欣泽
  • 英文作者:XIE Tingting;CHI Lina;LIU Ruiting;WANG Xinze;School of Environmental Science and Engineering, Shanghai Jiao Tong University;
  • 关键词: ; 固定化 ; 金属有机框架 ; 固定化方法 ; 环境应用
  • 英文关键词:enzyme;;immobilization;;metal-organic frameworks;;immobilization strategy;;environmental application
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:上海交通大学环境科学与工程学院;
  • 出版日期:2019-06-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.333
  • 基金:国家水体污染控制与治理科技重大专项(2017ZX07203-005);; 国家自然科学基金(21737002)
  • 语种:中文;
  • 页:HGJZ201906039
  • 页数:9
  • CN:06
  • ISSN:11-1954/TQ
  • 分类号:357-365
摘要
固定化酶克服了游离酶易失活、稳定性差、难以回收利用的缺点,扩大了酶的实际应用范围。近年来,由于金属有机框架(metal-organic frameworks,MOFs)独特的性质,如比表面积大、孔隙率高、孔径可调节、开放的金属位点和多样的结构组成等,其作为固定化酶的新型载体成为研究热点。本文综述了近年来MOFs固定化酶的研究进展,其中重点讨论了酶在MOFs上的固定化方法 (从头合成和后合成)和机理(载体包埋、表面吸附、共价连接和孔道扩散),并且分析了不同合成方法的优势和局限性,如从头合成可以选择孔径小于目标酶尺寸的MOFs,但要求MOFs的合成条件温和;后合成可以选择合成条件苛刻的MOFs,但固定化过程相对复杂。此外,还对MOFs固定化酶在环境污染物检测和去除方面的应用进展进行了总结。最后对MOFs固定化酶在环境领域的应用研究和面临的挑战进行了展望,提出应关注MOFs固定化酶中MOFs和酶对污染物的协同作用以及MOFs固定化酶的可控制备。
        Enzyme immobilization expands the practical application of the enzymes since it overcomes the drawbacks of free enzymes, such as easy deactivation, poor stability and difficulty in recovery. In recent years, as an emerging type of carriers for enzyme immobilization, metal-organic frameworks(MOFs) materials have been gaining considerable attentions in academic fields due to their large specific surface area, high porosity, adjustable pore size, open metal sites, various structures, and compositions.This review summarized the recent advances in immobilized enzymes on MOFs, with emphasis on the preparation strategies of de novo synthesis and post-synthesis, and the involved immobilization mechanisms(including carrier encapsulation, surface adsorption, covalent bonding, and pore diffusion).The advantages and limitations of different methods were discussed as well. For example, de novo synthesis allows the pore size of MOFs less than target enzymes,but requires MOFs which could be prepared in mild conditions; post-synthesis allows the synthesis of MOFs to occur in harsh conditions but has relatively complex process. In addition, the practical applications of enzyme-MOFs composites in the environmental field for contaminant detection and removal were summarized. Finally, it is pointed out that the further application of MOFs immobilized enzymes in environmental fields should be based on thorough fundamental research in terms of the synergistic effect of enzymes and MOFs on decontamination of pollutants, the rational design and controllable synthesis strategies.
引文
[1] KAUSHAL J, MEHANDIA S, SINGH G, et al. Catalase enzyme:application in bioremediation and food industry[J]. Biocatalysis and Agricultural Biotechnology, 2018, 16:192-199.
    [2] PELLIS A, SILVESTRINI L, SCAINI D, et al. Enzyme-catalyzed functionalization of poly(L-lactic acid)for drug delivery applications[J]. Process Biochemistry, 2017, 59:77-83.
    [3]杨杰,张玉彬,吴梧桐.固定化酶技术及其在医药上的应用新进展[J].药物生物技术, 2013, 20(6):553-556.YANG J, ZHANG Y B, WU W T. Technique of immobilized enzyme and its application in medicine[J]. Pharmaceutical Biotechnology,2013, 20(6):553-556.
    [4] NELSON J M, GRIFFIN E G. Adsorption of invertase[J]. Journal of the American Chemical Society, 1916, 38(5):1109-1115.
    [5]丁齐,邢晓东,李丽霞.多孔半互穿温敏水凝胶点击反应固定化酶[J].化工进展, 2014, 33(4):971-976.DING Q, XING X D, LI L X. Enzyme immobilization on porous semiinterpenetrating thermosensitive hydrogel carriers via thiol-based click reaction[J]. Chemical Industry and Engineering Progress, 2014,33(4):971-976.
    [6] PANDEY V P, RANI J, JAISWAL N, et al. Chitosan immobilized novel peroxidase from Azadirachta indica:characterization and application[J]. International Journal of Biological Macromolecules,2017, 104:1713-1720.
    [7] BERNINI F, CASTELLINI E, BERTO M, et al. Solvent tunes the peroxidase activity of cytochrome c immobilized on kaolinite[J].Applied Clay Science, 2015, 118:316-324.
    [8]张笛,邓满凤,赵赫,等.多巴胺包埋磁性SiO2固定化漆酶催化去除4-氯酚[J].化工学报, 2015, 66(9):3705-3711.ZHANG D, DENG M F, ZHAO H, et al. Immobilization of laccase on magnetic SiO2through dopamine self-polymerization for 4-CP removal[J].CIESC J., 2015, 66(9):3705-3711.
    [9] ZHOU L, WANG C, JIANG Y, et al. Immobilization of papain in biosilica matrix and its catalytic property[J]. Chinese Journal of Chemical Engineering, 2013, 21(6):670-675.
    [10]张义芹,王正,唐爱星,等.功能化碳纳米管固定化脂肪酶的制备及其合成生物柴油研究[J].可再生能源, 2016, 34(9):1411-1416.ZHANG Y Q, WANG Z, TANG A X, et al. Immobilization of lipase on functionalized multi-walled carbon nanotubes for biodiesel preparation[J]. Renewable Energy Resources, 2016, 34(9):1411-1416.
    [11] MOHAMED S A, AL-HARBI M H, ALMULAIKY Y Q, et al.Immobilization of horseradish peroxidase on Fe3O4magnetic nanoparticles[J]. Electronic Journal of Biotechnology, 2017, 27:84-90.
    [12] LONG J, ZHANG B, LI X, et al. Effective production of resistant starch using pullulanase immobilized onto magnetic chitosan/Fe3O4nanoparticles[J]. Food Chemistry, 2018, 239:276-286.
    [13] ZHANG W, QIU J, FENG H, et al. Increase in stability of cellulase immobilized on functionalized magnetic nanospheres[J]. Journal of Magnetism&Magnetic Materials, 2015, 375:117-123.
    [14] HUDSON S, COONEY J, MAGNER E. Proteins in mesoporous silicates[J]. Angewandte Chemie, 2010, 47(45):8582-8594.
    [15] LI P, MOON S Y, GUELTA M A, et al. Encapsulation of a nerve agent detoxifying enzyme by a mesoporous zirconium metal-organic framework engenders thermal and long-term stability[J]. Journal of the American Chemical Society, 2016, 138(26):8052-8055.
    [16] SHIH Y H, LO S H, YANG N S, et al. Trypsin-immobilized metalorganic framework as a biocatalyst in proteomics analysis[J].ChemPlusChem, 2012, 77(11):982-986.
    [17] MA W, JIANG Q, YU P, et al. Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements[J].Analytical Chemistry, 2013, 85(15):7550-7557.
    [18]田运齐,吴小芳,侯文颖,等.辣根过氧化物酶在MOF上的固定化研究[J].辽宁师范大学学报(自然科学版), 2016, 39(3):373-376.TIAN Y Q, WU X F, HOU W Y, et al. Immobilization of horseradish peroxidase on the metal-organic framework[J]. Journal of Liaoning Normal University, 2016, 39(3):373-376.
    [19] KIM Y, YANG T, YUN G, et al. Hydrolytic transformation of microporous metal-organic frameworks to hierarchical micro-and mesoporous MOFs[J]. Angewandte Chemie, 2015, 127(45):13273-13278.
    [20] JIANG D, XU P, WANG H, et al. Strategies to improve metal organic frameworks photocatalyst’s performance for degradation of organic pollutants[J]. Coordination Chemistry Reviews, 2018, 376:449-466
    [21] KADHOM M, DENG B. Metal-organic frameworks(MOFs)in water filtration membranes for desalination and other applications[J].Applied Materials Today, 2018, 11:219-230.
    [22] CUI L, WU J, LI J, et al. Electrochemical sensor for lead cation sensitized with a DNA functionalized porphyrinic metal-organic framework[J]. Analytical Chemistry, 2015, 87(20):10635-10641.
    [23] XU H, AGUILAR Z P, YANG L, et al. Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood[J]. Biomaterials, 2011, 32(36):9758-9765.
    [24] LIéDANA N, GALVE A, RUBIO C, et al. CAF@ZIF-8:one-step encapsulation of caffeine in MOF[J]. ACS Applied Materials&Interfaces, 2012, 4(9):5016-5021.
    [25] LU W. Tuning the structure and function of metal-organic frameworks via linker design[J]. Chemical Society Reviews, 2014, 43(16):5561-5593.
    [26] HINTZ H, WUTTKE S. Postsynthetic modification of an amino-tagged MOF using peptide coupling reagents:a comparative study[J].Chemical Communications, 2014, 50(78):11472-11475.
    [27] GKANIATSOU E, SICARD C, RICOUX R, et al. Metal-organic frameworks:a novel host platform for enzymatic catalysis and detection[J]. Materials Horizons, 2017, 4(1):55-63.
    [28] CAO L, LANGEN L V, SHELDON R A. Immobilized enzymes:carrierbound or carrier-free?[J]. Current Opinion in Biotechnology, 2003, 1(4):387-394.
    [29] SHIEH F K, WANG S C, YEN C I, et al. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach:size-selective sheltering of catalase in metal-organic framework microcrystals[J]. Journal of the American Chemical Society,2015, 137(13):4276-4279.
    [30] LüF, ZHANG Y, ZARE R N, et al. One-pot synthesis of proteinembedded metal-organic frameworks with enhanced biological activities[J]. Nano Letters, 2014, 14(10):5761-5765.
    [31] WU X, GE J, YANG C, et al. Facile synthesis of multiple enzymecontaining metal-organic frameworks in a biomolecule-friendly environment[J]. Chemical Communications, 2015, 51(69):13408-13411.
    [32]赵睿南,胡满成,李淑妮,等.基于金属有机骨架的固定化氯过氧化物酶的制备和性能评价[J].化学学报, 2017, 75(3):293-299.ZHAO R N, HU M C,LI S N, et al. Immobilization of chloroperoxidase in metal organic framework and its catalytic performance[J]. Acta Chimica Sinica, 2017, 75(3):293-299.
    [33] YIN Y, CHEN L G, QI X, et al. Protein-metal organic framework hybrid composites with intrinsic peroxidase-like activity as a colorimetric biosensing platform[J]. ACS Appl. Mater. Interfaces,2016, 8(42):29052-29061.
    [34] PANG S, WU Y, ZHANG X, et al. Immobilization of laccase via adsorption onto bimodal mesoporous Zr-MOF[J]. Process Biochemistry, 2016, 51(2):229-239.
    [35] PISKLAK T J, MACíAS M, COUTINHO D H, et al. Hybrid materials for immobilization of MP-11 catalyst[J]. Topics in Catalysis, 2006, 38(4):269-278.
    [36] JUNG S, KIM Y, KIM S J, et al. Bio-functionalization of metal-organic frameworks by covalent protein conjugation[J]. Chemical Communications, 2011, 47(10):2904-2906.
    [37] CAO S L, YUE D M, LI X H, et al. Novel nano-/micro-biocatalyst:soybean epoxide hydrolase immobilized on UiO-66-NH2MOF for efficient biosynthesis of enantiopure(R)-1, 2-octanediol in deep eutectic solvents[J]. ACS Sustainable Chemistry&Engineering, 2016,4(6):3586-3595.
    [38] LYKOURINOU V, CHEN Y, WANG X-S, et al. Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF:a new platform for enzymatic catalysis[J]. Journal of the American Chemical Society, 2011, 133(27):10382-10385.
    [39] ZHU Q, ZHUANG W, CHEN Y, et al. Nano-biocatalysts of Cyt c@ZIF-8/GO composites with high recyclability via a de novo approach[J]. ACS Appl. Mater. Interfaces, 2018, 10(18):16066-16076.
    [40] HERNANDEZ K, FERNANDEZ-LAFUENTE R. Control of protein immobilization:coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance[J].Enzyme&Microbial Technology, 2011, 48(2):107-122.
    [41] CHEN Y, LYKOURINOU V, HOANG T, et al. Size-selective biocatalysis of myoglobin immobilized into a mesoporous metalorganic framework with hierarchical pore sizes[J]. Inorganic Chemistry,2012, 51(17):9156-9158.
    [42] WANG Q, LIAN X, FANG Y, et al. Applications of immobilized biocatalyst in metal-organic frameworks[J]. Catalysts, 2018, 8(4):166-176.
    [43]刘秀红,常雁红,罗晖.环境领域中固定化酶的应用[J].安徽农业科学, 2014, 42(21):7171-7174.LIU X H, CHANG Y H, LUO H. Applications of the immobilized enzyme in environmental fields[J]. Journal of Anhui Agricultural Sciences, 2014, 42(21):7171-7174.
    [44] WANG X, LU X, WU L, et al. 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A[J]. Biosensors and Bioelectronics, 2015, 65:295-301.
    [45] LU X, WANG X, WU L, et al. Response characteristics of bisphenols on a metal-organic framework-based tyrosinase nanosensor[J]. ACS Applied Materials&Interfaces, 2016, 8(25):16533-16539.
    [46] ZHANG T, WANG L, GAO C, et al. Hemin immobilized into metalorganic frameworks as an electrochemical biosensor for 2, 4, 6-trichlorophenol[J]. Nanotechnology, 2018, 29(7):074003.
    [47] DONG S, ZHANG D, SUO G, et al. Exploiting multi-function metalorganic framework nanocomposite Ag@Zn-TSA as highly efficient immobilization matrixes for sensitive electrochemical biosensing[J].Analytica Chimica Acta, 2016, 934:203-211.
    [48]庞仕龙.介孔金属有机骨架复合材料固定化漆酶及应用[D].北京:北京林业大学, 2016.PANG S L. Immobilization of laccase onto mesoporous MOFs composite and the application of immobilized laccase[D]. Beijing:Beijing Forestry University, 2016.
    [49]李小娟,何长发,黄斌,等.金属有机骨架材料吸附去除环境污染物的进展[J].化工进展, 2016, 35(2):586-594.LI X J, HE C F, HUANG B, et al. Progress in the applications of metal-organic frameworks in adsorption removal of hazardous materials[J]. Chemical Industry and Engineering Progress, 2016, 35(2):586-594.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700