用户名: 密码: 验证码:
三维有序大孔钙钛矿型La_(1–x)K_xNiO_3催化剂提高炭烟催化燃烧活性:K取代的作用(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Three-dimensional ordered macroporous perovskite-type La_(1-x)K_xNiO_3 catalysts with enhanced catalytic activity for soot combustion: the Effect of K-substitution
  • 作者:梅雪垒 ; 熊靖 ; 韦岳长 ; 王楚君 ; 吴强 ; 赵震 ; 刘坚
  • 英文作者:Xuelei Mei;Jing Xiong;Yuechang Wei;Chujun Wang;Qiangqiang Wu;Zhen Zhao;Jian Liu;State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing;
  • 关键词:三维有序大孔材料 ; 镍酸镧 ; ; 钙钛矿 ; 炭烟燃烧
  • 英文关键词:Three-dimensional ordered;;macroporous material;;LaNiO_3;;Potassium;;Perovskite;;Soot combustion
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:中国石油大学(北京)理学院重质油加工国家重点实验室;
  • 出版日期:2019-04-04
  • 出版单位:催化学报
  • 年:2019
  • 期:v.40
  • 基金:supported by the National Natural Science Foundation of China(21673142);; National Engineering Laboratory for Mobile Source Emission Control Technology(NELMS2017A05);; PetroChina Innovation Foundation(2018D-5007-0505);; Science Foundation of China University of Petroleum,Beijing(242017QNXZ02,2462018BJC005)~~
  • 语种:英文;
  • 页:CHUA201905014
  • 页数:11
  • CN:05
  • ISSN:21-1601/O6
  • 分类号:124-134
摘要
催化炭烟燃烧的本质是典型的固体(炭烟颗粒)-固体(催化剂)-气体(O_2和NO)三相深度氧化反应.因此炭烟燃烧性能不仅与催化剂的本征活性有关,同时也与催化剂和炭烟颗粒之间的接触效率有关.钙钛矿型(ABO_3)氧化物具有高热稳定性和高催化活性,在钙钛矿型氧化物中A位通常为稀土元素,B位通常为过渡金属元素,钙钛矿的A,B位离子都可以被半径相近的其他元素部分取代,而且物相结构不发生变化.我们组前期研究发现,用碱金属部分取代钙钛矿型氧化物中的A位,可以有效提高其催化活性.同时发现三维有序大孔(3DOM)结构可以有效的增加催化剂与碳烟颗粒的接触效率.基于此,本文利用胶体晶体模板法成功制备了3DOM La_(1-x)K_xNiO_3钙钛矿型催化剂,并采用SEM,TEM,HRTEM,Elements mapping,XRD,Raman,XPS和H_2-TPR等手段对其物理化学性能进行了表征,进一步探讨K取代对3DOM La_(1–x)K_xNiO_3催化剂炭烟催化燃烧性能的影响.SEM和TEM照片显示,制备的3DOM La_(1–x)K_xNiO_3催化剂孔道三维有序贯通,孔径均一,孔壁厚度均匀,每个大孔下面展示清晰可见的小孔窗,大孔孔径大约为260 nm,这有利于炭烟颗粒在气流的协助下进入催化剂的孔道之内,从而提高炭烟与催化剂之间的接触效率.3DOM结构催化剂具有大的比表面积(24?27 m~2g~(–1)),且K的取代对其比表面积无太大的影响.XRD和Raman谱证实了催化剂的钙钛矿结构,且K能够取代La并进入钙钛矿氧化物的晶格中.XPS和H_2-TPR表征发现,K取代La之后,B位的Ni元素的价态有所提升,表面活性氧物种密度增加,其中3DOM La_(0.95)K_(0.05)NiO_3催化剂具有最高的Ni~(4+)的含量和活性氧含量.3DOM La_(1–x)K_xNiO_3催化剂展示了高的炭烟燃烧催化性能,且K的取代能够明显促进其催化炭烟燃烧活性.在松散接触条件下,催化剂炭烟催化燃烧活性的顺序为:3DOM La_(0.95)K_(0.05)NiO_3>3DOM La_(0.90)K_(0.10)NiO_3>3DOM La_(0.80)K_(0.20)NiO_3>3DOM La_(0.99)K_(0.01)NiO_3>3DOM LaNiO_3>particle–type LaNiO_3.其中,3DOM La_(0.95)K_(0.05)NiO_3催化剂展示了最高的炭烟燃烧催化性能,其T_(50)和S_(CO2)值分别为338°C和98.2%,这与Pt基催化剂活性相当.另外,对炭烟催化燃烧性能的影响因素进行了探讨:一方面,三维有序大孔结构有效提高催化剂活性;另一方面,K元素的取代提高了Ni的价态,从而提升了表面活性氧物种数量,这对炭烟催化燃烧起着至关重要的作用.
        Three-dimensional ordered macroporous(3DOM)La_(1-x)K_xNiO_3 perovskite-type catalysts were successfully prepared by a colloidal crystal template method and characterized by scanning electron microscopy,transmission electron microscopy,high-resolution transmission electron microscopy,energy-dispersive X-ray scattering elemental mapping,X-ray diffraction,Raman and X-ray photoelectron spectroscopy,and temperature-programmed reduction of H_2.Further,their catalytic activity in soot combustion was determined by temperature-programmed oxidation reaction.K substitution into the LaNiO_3 lattice led to remarkably improved catalytic activity of this catalyst in soot combustion.Amongst various catalysts,La_(0.95)K_(0.05)NiO_3 exhibited the highest activity in soot combustion(with its T_(50) and S_(CO_2) values being 338°C and 98.2%,respectively),which is comparable to the catalytic activities of Pt-based catalysts under the condition of poor contact between the soot and the catalyst.K-substitution improves the valence state of Ni and increases the number of oxygen vacancies,thereby leading to increased density of surface-active oxygen species.The active oxygen species play a vital role in catalyzing the elimination of soot.The perovskite-type La_(1-x)K_xNiO_3 nanocatalysts with 3DOM structure without noble metals have potential for practical applications in the catalytic combustion of diesel soot particles.
引文
[1]J.Oi Uchisawa,A.Obuchi,Z.Zhao,S.Kushiyama,Appl.Catal.B,1998,18,183-187.
    [2]G.Zou,Z.Fan,X.Yao,Y.Zhang,Z.Zhang,M.Chen,W.Shangguan,Chin.J.Catal.,2017,38,564-572.
    [3]S.M.Sun,W.L.Chu,W.S.Yang,Chin.J.Catal.,2009,30,685-689.
    [4]Y.Wei,Q.Wu,J.Xiong,J.Liu,Z.Zhao,Chin.J.Catal.,2018,39,606-612.
    [5]L.Cheng,Y.Men,J.G.Wang,H.Wang,W.An,Y.Q.Wang,Z.C.Duan,J.Liu,Appl.Catal.B,2017,204,374-384.
    [6]Y.Wei,J.Liu,Z.Zhao,A.Duan,G.Jiang,J.Catal.,2012,287,13-29.
    [7]Y.Wei,J.Liu,Z.Zhao,Y.Chen,C.Xu,A.Duan,G.Jiang,H.He,Angew.Chem.Int.Ed.,2011,50,2326-2329.
    [8]J.Xiong,Q.Wu,X.Mei,J.Liu,Y.Wei,Z.Zhao,D.Wu,J.Li,ACS Catal.,2018,8,7915-7930.
    [9]Y.Wei,Z.Zhao,J.Liu,C.Xu,G.Jiang,A.Duan,Small,2013,9,3957-3763.
    [10]Z.Zhang,D.Han,S.Wei,Y.Zhang,J.Catal.,2010,276,16-23.
    [11]S.Liu,X.Wu,Y.Lin,M.Li,D.Weng,Chin.J.Catal.,2014,35,407-415.
    [12]Y.Wei,J.Jiao,X.Zhang,B.Jin,Z.Zhao,J.Xiong,Y.Li,J.Liu,J.Li,Nanoscale,2017,9,4558-4571.
    [13]M.Sun,L.Wang,B.Feng,Z.Zhang,G.Lu,Y.Guo,Catal.Today,2011,175,100-105.
    [14]C.Cao,X.Li,Y.Zha,J.Zhang,T.Hu,M.Meng,Nanoscale,2016,11,5857-5864.
    [15]H.Zhang,J.Wang,Y.Cao,Y.Wang,M.Gong,Y.Chen,Chin.J.Catal.,2015,36,1333-1341.
    [16]Y.Liu,H.Dai,Y.Du,J.Deng,L.Zhang,Z.Zhao,C.T.Au,J.Catal.,2012,287,149-160.
    [17]N.Feng,J.Meng,Y.Wu,C.Chen,L.Wang,L.Gao,H.Wan,G.Guan,Catal.Sci.Technol.,2016,6,2930-2941.
    [18]Z.Peng,D.Zhang,T.Yan,J.Zhang,L.Shi,Appl.Surf.Sci.,2013,282,965-973.
    [19]C.Rao,R.Liu,X.Feng,J.Shen,H.Peng,X.Xu,X.Fang,J.Liu,X.Wang,Chin.J.Catal.,2018,39,1683-1694.
    [20]H.Yang,J.Deng,Y.Liu,S.Xie,P.Xu,H.Dai,Chin.J.Catal.,2016,37,934-946.
    [21]Z.Zhang,Y.Zhang,Z.Wang,X.Gao,J.Catal.,2010,271,12-21.
    [22]X.Yang,X.Yu,M.Lin,M.Ge,Y.Zhao,F.Wang,J.Mater.Chem.A,2017,5,13799-13806.
    [23]C.Tang,J.Sun,X.Yao,Y.Cao,L.Liu,C.Ge,F.Gao,L.Dong,Appl.Catal.B,2014,146,201-212
    [24]M.Sadakane,R.Kato,T.Murayama,W.Ueda,J.Solid State Chem.,2011,184,2299-2305.
    [25]H.Wang,Z.Zhao,C.Xu,A.Duan,J.Liu,Y.Chi,Chin.J.Catal.,2008,29,649-654.
    [26]C.Rao,J.Shen,F.Wang,H.Peng,X.Xu,H.Zhan,X.Fang,J.Liu,W.Liu,X.Wang,Appl.Surf.Sci.,2018,435,406-414
    [27]T.Liu,Q.Li,Y.Xin,Z.Zhang,X.Tang,L.Zheng,P.X.Gao,Appl.Catal.B,2018,232,108-116.
    [28]Y.Wei,J.Liu,Z.Zhao,A.Duan,G.Jiang,C.Xu,J.Gao,H.He,X.Wang,Energy Environ.Sci.,2011,4,2959-2970.
    [29]J.Xu,J.Liu,Z.Zhao,C.Xu,J.Zheng,A.Duan,G.Jiang,J.Catal.,2011,282,1-12.
    [30]Z.Li,M.Meng,Y.Zha,F.Dai,T.Hu,Y.Xie,J.Zhang,Appl.Catal.B,2012,121-122,65-74.
    [31]N.T.H.Le,J.M.Calderón-Moreno,M.Popa,D.Crespo,L.Van Hong,N.X.Phuc,J.Eur.Ceram.Soc.,2006,26,403-407.
    [32]S.Mickevi?ius,S.Grebinskij,V.Bondarenka,B.Vengalis,K.?liu?ien?,B.A.Orlowski,V.Osinniy,W.Drubec,J.Alloys Compd.,2006,423,107-111.
    [33]R.C.Rabelo-Neto,H.B.E.Sales,C.V.M.Inocêncio,E.Varga,A.Oszko,A.Erdohelyi,F.B.Noronha,L.V.Mattos,Appl.Catal.B,2018,221,349-361.
    [34]W.Che,M.Wei,Z.Sang,Y.Ou,Y.Liu,J.Liu,J.Alloys Compd.,2018,731,381-388.
    [35]L.Qiao,X.F.Bi,Thin Solid Films,2010,519,943-946.
    [36]J.Yu,J.Sunarso,Y.Zhu,X.Xu,R.Ran,W.Zhou,Z.Shao,Chem.Eur.J.,2016,22,2719-2727.
    [37]M.Lin,X.Yu,Y.Yang,K.Li,M.Ge,J.Li.Catal.Sci.Technol.,2017,7,1573-1580.
    [38]J.T.Mefford,W.G.Hardin,S.Dai,K.P.Johnston,K.J.Stevenson,Nat.Mater.,2014,13,726-732.
    [39]G.Perin,J.Fabro,M.Guiotto,Q.Xin,M.M.Natile,P.Cool,P.Canu,A.Glisenti,Appl.Catal.B,2017,209,214-227.
    [40]H.Wang,J.Liu,Z.Zhao,Y.Wei,C.Xu,Catal.Today,2012,184,288-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700