用户名: 密码: 验证码:
基于主元分析的烟气协同脱除技术研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Flue Gas Synergistic Removal based on Principal Component Analysis
  • 作者:付龙龙 ; 杨新民 ; 童博 ; 文乐
  • 英文作者:FU Long-long;YANG Xin-min;TONG Bo;WEN Le;Xi′an Thermal Power Research Institute Co. Ltd.;
  • 关键词:脱硫 ; 除尘 ; 协同脱除 ; 主元分析
  • 英文关键词:desulfurization;;dedusting;;synergistic removal;;principal component analysis
  • 中文刊名:RNWS
  • 英文刊名:Journal of Engineering for Thermal Energy and Power
  • 机构:西安热工研究院有限公司;
  • 出版日期:2019-03-14 10:26
  • 出版单位:热能动力工程
  • 年:2019
  • 期:v.34;No.220
  • 语种:中文;
  • 页:RNWS201903011
  • 页数:5
  • CN:03
  • ISSN:23-1176/TK
  • 分类号:64-68
摘要
为达到超低排放的要求,对某300、600、660 MW机组进行了不同形式的烟气处理系统升级改造。改造后的运行试验表明:这3台机组的脱硫协同除尘效率在69.73%~81.21%之间。为进一步分析协同除尘效率的主要影响因素,以600 MW机组为例,采用主元分析法,得到影响脱硫协同除尘效率的主要因素是脱硫入口烟尘浓度、机组负荷和脱硫装置入口SO_2浓度。进一步分析,脱硫入口SO_2浓度在1 805 mg/m~3,其协同除尘效率最高。
        For the 300 MW,600 MW and 660 MW units,in order to meet the requirements of ultra-low emission,the three units have been upgraded and reformed with different types of flue gas treatment system. The operation test after the transformation shows that the desulfurization synergistic dust removal efficiency of the three units is between 69.73% and 81.21%. In order to further analyze the main influencing factors of synergistic dust removal efficiency,the 600 MW unit was studied more in details. With the method of principal component analysis,the main influencing factors of synergistic dust removal efficiency of desulfurization were determined to be the concentration of flue dust at the inlet of desulfurization device,unit load and SO_2 concentration at the inlet of desulfurization device. Further analysis indicated that the synergistic dust removal efficiency varied with SO_2 concentration at the inlet of desulfurization unit. For the power plant under study,with the 1 805 mg/m~3 of SO_2 concentration at the entrance of desulfurization unit,the synergistic dust removal efficiency is the highest.
引文
[1] YANG T T,CUI C,SHEN Y L,et al. A novel denitration cost optimization system for power unit boilers[J]. Applied Thermal Engineering,2016,96: 400-410.
    [2] FENG C,GAO X N,TANG Y T,et al. Comparative life cycle environmental assessment of flue gas desulphurization technologies in China[J]. Journal of Cleaner Production,2014,68:81-92.
    [3] SON C H,Lee W J,JUNG D W,et al. Use of an electrostatic precipitator with wet-porous electrode arrays for removal of air pollution at a precision manufacturing facility[J]. Journal of Aerosol Science,2016,100:118-128.
    [4] 姚明宇,聂剑平,张立欣,等.燃煤电站锅炉烟气污染物一体化协同治理技术[J]. 热力发电,2016,45(3): 8-12.YAO Ming-yu,NIE Jian-ping,ZHANG Li-xin,et al. Integrative flue-gas pollutants removal technology for coal-fired utility boilers[J]. Thermal Power Generation,2016,45(3):8-12.
    [5] 孟炜,李清毅,胡达清,等.百万千瓦燃煤机组烟气超低排放设计及应用[J]. 热能动力工程,2016,31(1): 111-116.MENG Wei,LI Qing-yi,HU Da-qing ,et al. Design and applications of the ultra low emissions of flue gases from a 1 000 MW coal-fired boiler unit[J].Journal of Engineering for Thermal Energy and Power,2016,31(1):111-116.
    [6] TI S G,CHEN Z C,LI Z Q,et al. Effect of outer secondary air vane angles on combustion characteristics and NOx emissions for centrally fuel rich swirl burner in a 600-MWe wall-fired pulverized-coal utility boiler[J]. Applied Thermal Engineering,2017,125:951-962.
    [7] KHALIL AEE,GUPTA AK. Toward ultra-low emission distributed combustion with fuel air dilution[J] .Applied Energy,2015,148:187-195.
    [8] 李兴华,何育东.燃煤火电机组SO2超低排放改造方案研究[J]. 中国电力,2015,48(10): 148-151.LI Xing-hua,HE Yu-dong. Study on modification of ultra-low SO2 emission in coal-fired power plants[J] Electric Power,2015,48(10):148-151.
    [9] 史文峥,杨萌萌,张绪辉,等.燃煤电厂超低排放技术路线与协同脱除[J].中国电机工程学报,2016,36(16): 4308-4318.SHI Wen-zheng,YANG Meng-meng,ZHANG Xu-hui,et al.Ultra-low emission technical route of coal-fired power plants and the cooperative removal[J]. Proceedings of the CSEE,2016,36(16):4308-4318.
    [10] 邱凤翔,徐治皋,司风琪,等.基于主元分析的关联规则挖掘及在电厂中的应用[J]. 电力系统自动化,2009,33(16):81-84.QIU Feng-xiang,XU Zhi-gao,SI Feng-qi,et al. Association rules mining based on principal component analysis and its applications in power plant[J]. Automation of electric power systems,2009,33(16):81-84.
    [11] PANDEY B,AGRAWAL M,SINGH S. Assessment of air pollution around coal mining area: Emphasizing on spatial distributions,seasonal variations and heavy metals,using cluster and principal component analysis[J]. Atmospheric Pollution Research,2014,5: 79-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700