用户名: 密码: 验证码:
岩溶区域水体无机氮分布及影响氮素矿化的生境
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution of Inorganic Nitrogen and Environmental Factors of Nitrogen Mineralization in Waters of the Karst Area
  • 作者:李仰征 ; 任金铜 ; 杨延丽 ; 田露银 ; 孔方祥 ; 邓皓蕾 ; 吴秀花
  • 英文作者:LI Yangzheng;REN Jintong;YANG Yanli;TIAN Luyin;KONG Fangxiang;DENG Haolei;WU Xiuhua;School of Ecological Engineering,Guizhou University of Engineering Science;School of Geography and Environment Science,Guizhou Normal University;School of Environment and Resources,Guangxi Normal University;
  • 关键词:氨氮 ; 亚硝酸盐氮 ; 硝酸盐氮 ; 氨氧化细菌 ; 亚硝酸氧化细菌 ; 岩溶水 ; 毕节市
  • 英文关键词:ammonia;;nitrite;;nitrate;;Ammonia-oxidizing bacteria;;Nitrite-oxidizing bacteria;;karst water;;Bijie city
  • 中文刊名:DZDQ
  • 英文刊名:Earth and Environment
  • 机构:贵州工程应用技术学院生态工程学院;贵州师范大学地理与环境科学学院;广西师范大学环境与资源学院;
  • 出版日期:2019-03-18 10:21
  • 出版单位:地球与环境
  • 年:2019
  • 期:v.47;No.329
  • 基金:贵州省科技厅毕节市科技局贵工程科技联合基金(黔科合LH字[2016]7064);; 贵州省教育厅自然科学基金(黔教合KY字[2015]448);贵州省教育厅创新群体重大研究项目(黔教合KY字[2017]050);; 贵州省重点学科生态学资助项目(黔学位合字ZDXK[2013]11)
  • 语种:中文;
  • 页:DZDQ201903002
  • 页数:8
  • CN:03
  • ISSN:52-1139/P
  • 分类号:15-22
摘要
从时空角度对岩溶区不同赋存条件水体进行研究,目的为掌握无机三氮变化规律、探究影响其转换的环境条件,为喀斯特山区水资源保护与利用提供理论依据。采用标准方法检测水体氨氮、亚硝酸盐氮、硝酸盐氮、DO、CODcr、TP、TN等相关指标,研究表明:①自然环境越是相对封闭,三种无机氮形态总体年内变幅也越小,其中亚硝酸盐氮表现最为显著。②赋存封闭的地下水体氨氮、亚硝酸盐氮与硝酸盐氮含量依次是未检出、0. 006和1. 469 mg/L,其浓度依次增高的特点与亚热带喀斯特山区地层溶蚀孔隙和漏斗等地貌形态的充分发育和淋溶土对氨氮的吸附作用是密切关联的。对于该水体亚硝酸盐氮,初秋时节出现浓度峰值,与夏季农业施肥与土壤下渗补给存在2~3个月时间滞后有关。③地表半开放水体清荷园氨氮和亚硝酸盐氮也表现为夏季含量低的特点。低温影响到AOB活性则成为亚硝酸盐氮冬季含量低的主导因素。春秋季气温回升(相比冬季)而降水不大(相比夏季),故各出现一个峰值。其硝酸盐氮曲线夏季仍然平稳,表征NOB增殖的瓶颈因素不是温度,而与溶解氧有关。④地表开放水体流仓桥河段夏季氨氮浓度低主要与降水稀释和水生植物对氨氮有最大吸收偏好有关。夏季陡变的自然环境条件(栖息环境突变、碳源不足等)和NOB自身适应环境能力差等因素,都会造成其增殖受限、硝化受阻而亚硝酸盐氮累积现象的发生。表现为亚硝酸盐氮峰值时节基本对应着硝酸盐氮低谷时段。且地表径流如要激发NOB活性,DO和环境温度的阈值分别应在4 mg/L和10℃以上。
        In order to explore the distribution of three inorganic nitrogen species and the environmental conditions of nitrogen transformations in the karst area of southwest China,and to provide the theoretical support for water protection and utilization in the karst area,we studied the water quality in the karst area from both aspects of space and time. Contents of ammonia,nitrite and nitrate,DO,CODcr,TP,TN and other related indicators were analyzed using standard methods. The results showed: ① The more closed are the environments,the smaller are the annual variations of inorganic nitrogen contents,especially,nitrite. ② Concentrations of ammonia,nitrite and nitrate in sealed underground waters were below the detection limit,0. 012 mg/L and 1. 472 mg/L,respectively,which is closely related to natural conditions in the subtropical karst area of Guizhou,China,such as,ubiquitous occurrence of dissolved fissure and funnel in carbonate bedrocks and high adsorptive ability of alfisols to ammonia; the highest concentrations of nitrite were found in early autumn instead of in summer because that a lag period of 2-3 months may exist,in which nitrite introduced by agricultural fertilization in summer can infiltrate into the groundwater. ③ Concentrations of ammonia and nitrite in the Qingheyuan pond,a semi-open surface water,were lowest in summer. The ammonia concentration is low in winter because of the low temperature,which restrains the activity of Ammonia-oxidizing bacteria( AOB). Compared with summer and winter,temperature and precipitation in spring and autumn are moderate,so concentrations of ammonia were found to be relatively high in both seasons. The annual concentration curve of nitrate showed stable in summer,suggesting that,instead of temperature,DO is the controlling factor of the Nitrite-oxidizing bacteria( NOB)proliferation. ④ The concentration of ammonia in the reach of Liucangqiao,an open water system,was low in summer,which mainly related to the precipitation dilution and the preference absorption of ammonia by aquatic plants. Since of the poor adapt ability of NOB to environment changes,the proliferation of NOB is largely limited in the dramatically changed natural environment of summer,e. g.habitat mutation,lack of carbon source etc.,consequently,nitrite was accumulated significantly. Annually,the higher concentration of nitrite and the lower concentration of nitrate occurred simultaneously. Moreover,to stimulate the NOB activity in open surface waters,the concentration of DO and the atmospheric temperature should be greater than 4 mg/L and 10 ℃,respectively.
引文
[1]毛战坡,尹澄清,王雨春,等.污染物在农田溪流生态系统中的动态变化[J].生态学报,2003,23(12):2614-2623.
    [2]肖唐付,洪业汤,郑宝山,等.黔西南Au-As-Hg-Tl矿化区毒害金属元素的水地球化学[J].地球化学,2000,29(6):571-577.
    [3]李世杰,窦鸿身,舒金华,等.我国湖泊水环境问题与水生态系统修复的探讨[J].中国水利,2006(13):14-17.
    [4]袁道先,朱德浩,翁金桃,等.中国岩溶学[M].北京:地质出版社,1993:129-134.
    [5]Kovacic G,Ravbar N.A review of the potential and actual sources of pollution to groundwater in selected Karst areas in Slovenia[J].Natural Hazards and Earth System Sciences,2005(5):225-233.
    [6]Douglas G B,Ghiath A A.Spatial distribution of nitrogen on grazed Karst landscapes[J].The Scientific World,2001,1(s2),809-813.
    [7]朱晓锋,陈洪松,付智勇,等.喀斯特灌丛坡地土壤表层岩溶带产流及氮素流失特征[J].应用生态学报,2017,28(7):2197-2206.
    [8]Obeidat M M,Ahmad F Y,Hamouri N A,et al.Assessment of nitrate contamination of Karst springs,Bani Kanana,northern Jordan[J].Revista Mexicana De Ciencias Geologicas,2008,25(3):426-437.
    [9]卢海平,孔祥胜,邹胜章,等.广西南宁朝阳溪对浅层地下水污染特征研究[J].中国岩溶,2015,34(4):395-401.
    [10]谢伟芳,夏品华,林陶,等.喀斯特山区溪流上覆水-孔隙水-沉积物中不同形态氮的赋存特征及其迁移---以麦西河为例[J].中国岩溶,2011,30(1):9-15.
    [11]Schwarz K,Barth J A C,Postigo R C,et al.Mixing and transport of water in a Karst catchment:a case study from precipitation via seepage to the spring[J].Hydrology And Earth System Sciences,2009(13):285-292.
    [12]张远瞩,贺秋芳,蒋勇军,等.重庆南山表层岩溶泉与地下河三氮运移及氮通量估算[J].环境科学,2016,37(4):1379-1388.
    [13]张陶.典型岩溶区溪流中硝酸盐动态变化及其影响因素研究[D].重庆:西南大学,2015:19-27.
    [14]汪智军,杨平恒,旷颖仑,等.基于15N同位素示踪技术的地下河硝态氮来源时空变化特征分析[J].环境科学,2009,30(12):3548-3554.
    [15]国家环境保护局.HJ/T 91-2002,地表水和污水监测技术规范[S].北京:中国环境科学出版社,2003.
    [16]张芳,易能,邸攀攀,等.不同水生植物的除氮效率及对生物脱氮过程的调节作用[J].生态与农村环境学报,2017,33(2):174-180.
    [17]苏倩,刘存歧,杨军,等.小西淀穗花狐尾藻的生长特性与氮磷吸收规律研究[J].水生态学杂志,2012,33(6):50-55.
    [18]李仰征,张群生,王芳,等.小流域不同河段冬季水质对人为活动的响应及其与底泥的关联[J].环境科学与技术,2016,39(9):204-208.
    [19]董玉玮,张雁秋,涂宝军,等.亚硝化细菌培养条件的优化[J].江苏农业科学,2014,42(4):314-316.
    [20]叶建锋,徐祖信,操家顺,等.亚硝酸型半硝化影响因素的试验研究[J].水处理技术,2005,31(10):5-7,24.
    [21]裘维蕃,狄原渤,周毓瑶,等.大白菜窖藏中一些腐烂细菌的研究[J].植物病理学报,1964,7(2):127-134.
    [22]国家环境保护局.GB11607-89,渔业水质标准[S].北京:中国标准出版社,1989.
    [23]叶永青,王中美.遵义市岩溶地下水环境的空间信息统计组合分析[J].地下水,2012,34(3):143-146,183.
    [24]张晓诗,赵兵,谭梅,等.贵州大方地区地下水水质质量分析及环境意义[J].地下水,2016,38(4):1-6.
    [25]Strous M,Heijnen J J,Kuenen J G,et al.The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammoniumoxidizing microorganisms[J].Applied Microbiology and Biotechnology,1998,50(5):589-596.
    [26]张杰,李冬,杜贺,等.亚硝化反应器的启动及控制因子研究[J].哈尔滨工业大学学报,2010,42(6):864-868.
    [27]Pochana K,Keller J,Lant P.Model development for simultaneous nitrification and denitrification[J].Water Science&Technology,1999,39(1):235-243.
    [28]王志盈,袁林江,彭党聪,等.内循环生物液化床硝化过程的选择特性研究[J].中国给水排水,2000,16(1):1-4.
    [29]陈尚洪,张晴雯,陈红琳,等.四川丘陵农区地表水水质时空变化与污染现状评价[J].农业工程学报,2016,32(2):52-59.
    [30]华玲玲,李文超,翟丽梅,等.三峡库区古夫河小流域氮磷排放特征[J].环境科学,2017,38(1):138-146.
    [31]于超,储金宇,白晓华,等.洱海入湖河流弥苴河下游氮磷季节性变化特征及主要影响因素[J].生态学报,2011,31(23):7104-7111.
    [32]张亚丽,张依章,张远,等.太子河流域地表水和地下水硝酸盐污染特征及来源分析[J].中国生态农业学报,2014,22(8):980-986.
    [33]Jones G L,Paskins A R.Influence of high partial pressure of carbon dioxide and/or oxygen on nitrification[J].Journal Of Chemical Technology&Biotechnology,1982,32(1):213-223.
    [34]李芸,熊向阳,李军,等.膜生物反应器处理晚期垃圾渗滤液亚硝化性能及其抑制动力学分析[J].中国环境科学,2016,36(2):419-427.
    [35]陈波,杨睿,刘再华,等.水生光合生物对茂兰拉桥泉及其下游水化学和δ13CDIC昼夜变化的影响[J].地球化学,2014,43(4):375-385.
    [36]张继红,吴文广,任黎华,等.桑沟湾表层水pCO2的季节变化及影响因素分析[J].渔业科学进展,2013,34(1):57-64.
    [37]郭琴,龙健,廖洪凯,等.贵州高原喀斯特流域浅层地下水化学特征及质量评价-以普定后寨河为例[J].环境化学,2017,36(4):858-866.
    [38]张宇,杨平恒,王建力,等.小型人工湖泊水体地球化学冬夏昼夜变化对比研究-以西南大学崇德湖为例[J].西南大学学报(自然科学版),2016,38(6):92-98.
    [39]王俊臣,陈伟强,李月红.藻类对池塘水环境的影响及水生植物和鲢鳙对水体的净化[J].吉林农业大学学报,2016,38(1):111-116.
    [40]邢丽贞.固定化藻类去除污水中氮磷及其机理的研究[D].西安:西安建筑科技大学,2005:93-96.
    [41]陈余道,程亚平,蒋亚萍,等.岩溶地下河反硝化作用的有限性-一个碳酸盐岩管道的实验研究[J].环境科学学报,2016,36(10):3629-3635
    [42]徐亚同.废水反硝化除氮[J].上海环境科学,1994,13(10):8-12
    [43]高兰,章北平,郑源贾,等.溶解氧浓度对好氧阶段生物脱氮途径的影响[J].华中科技大学学报(自然科学版),2013,41(2):114-119.
    [44]Van Loosdrecht M C M,Salem S.Biological treatment of sludge digester liquids[J].Water Science Technology,2006,53:11-20.
    [45]吕保樱,刘再华,廖长君,等.水生植物对岩溶水化学日变化的影响-以桂林岩溶水文地质试验场为例[J].中国岩溶,2006,25(4):335-340.
    [46]陈梅雪,杨敏,齐嵘,等.实时控制条件下外加碳源用于低C/N比养殖废水处理中污泥膨胀的控制研究[J].环境科学学报,2007,27(1):59-63.
    [47]袁建飞,邓国仕,徐芬,等.毕节市北部岩溶地下水水文地球化学特征[J].水文地质工程地质,2016,43(1):12-21.
    [48]王贺,谷洪彪,迟宝明,等.柳江盆地浅层地下水硝酸盐分布特征及影响因素分析[J].环境科学,2016,37(5):1699-1706.
    [49]支霞辉,黄霞,李朋,等.污水短程脱氮工艺中亚硝酸盐积累的影响因素[J].中国环境科学,2009,29(5):486-492.
    [50]刘国华,陈燕,范强,等.溶解氧对活性污泥系统的脱氮效果和硝化细菌群落结构的影响[J].环境科学学报,2016,36(6):1971-1978.
    [51]周岩.旋流器与膜生物反应器联用工艺研究[D].哈尔滨:哈尔滨工业大学,2009:25-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700