用户名: 密码: 验证码:
金属基弥散微封装燃料中TRISO燃料颗粒的尺寸优化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dimension Optimization Design of TRISO Fuel Particle in Metal Matrix Microencapsulated Fuels
  • 作者:辛勇 ; 李垣明 ; 唐昌兵 ; 陈平 ; 周毅 ; 高士鑫 ; 刘仕超 ; 赵艳丽 ; 岳慧芳
  • 英文作者:Xin Yong;Li Yuanming;Tang Changbing;Chen Ping;Zhou Yi;Gao Shixin;Liu Shichao;Zhao Yanli;Yue Huifang;Science and Technology on Reactor System Design Technology Laboratory,Nuclear Power Institute of China;
  • 关键词:弥散微封装燃料 ; 三结构同向型(TRISO) ; 优化设计
  • 英文关键词:Microencapsulated fuel;;Tristructural isotropic (TRISO);;Optimization design
  • 中文刊名:HDLG
  • 英文刊名:Nuclear Power Engineering
  • 机构:中国核动力研究设计院核反应堆系统设计技术重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:核动力工程
  • 年:2019
  • 期:v.40;No.233
  • 语种:中文;
  • 页:HDLG201902037
  • 页数:4
  • CN:02
  • ISSN:51-1158/TL
  • 分类号:180-183
摘要
弥散微封装燃料是将包覆燃料颗粒弥散在基体中形成燃料芯块或者燃料棒,是目前耐事故燃料(ATF)中最具发展潜力的燃料之一。包覆燃料颗粒为三结构同向型(TRISO)或者两结构同向型(BISO)包覆燃料颗粒,基体可以是金属也可以是陶瓷。本文用有限元分析软件ABAQUS对金属基弥散微封装燃料进行了分析计算。通过分析TRISO燃料颗粒各包覆层厚度对燃料性能的影响,提出优化改进的建议。研究结果表明,疏松热解碳层(Buffer)厚度越大,燃料颗粒发生破损失效的燃耗越高,因此设计时应考虑增加其厚度;内部致密热解碳层(IPyC)厚度越大,其自身的最大环向拉应力越大,因此设计时应降低其厚度;碳化硅(SiC)层厚度越大,其自身环向压应力越小,因此设计时应降低其厚度。本文的研究结果可为金属基弥散微封装燃料的优化设计提供指导。
        Microencapsulated fuel is the fuel pellet or fuel rod which formed by coated fuel particles dispersed in the matrix, and it is one of the most potential accident tolerant fuel(ATF) fuel. Coated fuel particles can be tristructural isotropic(TRISO) or bistructura isotropic(BISO), and the matrix is metal or ceramics. Based on the ABAQUS software, the metal matrix microencapsulated fuel is calculated. By analyzing the effect of the coating thickness on the fuel performance, suggestions for the optimization are given. The results showed that the thicker the Buffer is, the higher the burnup for the failure is, and thus, the increasing of the Buffer thickness should be considered in the design. The thicker the IPyC layer is, the larger the maximum hoop stress is, and thus, its thickness should be reduced in the design. The thicker the SiC layer is, the smaller the hoop stress is, and thus, its thickness should be reduced in the design. The results of this study could provide a guidance for the optimization design of the metal matrix microencapsulated fuels.
引文
[1]TERRANI K A,BELL G L,KIGGANS J,et al.Metal matrix microencapsulated fuel technology for lwr applications[R].Tennessee:Oak Ridge National Laboratory(ORNL).High Flux Isotope Reactor.Shared Research Equipment Collaborative Research Center,2012.
    [2]COLLIN B P.Modeling and analysis of UN TRISO fuel for LWR application using the PARFUME code[J].Journal of Nuclear Materials,2014,451(1):65-77.
    [3]唐春和.高温气冷堆燃料元件[M].北京:化学工业出版社,2007:16-17.
    [4]李垣明,唐昌兵,余红星,等.锆基弥散微封装燃料等效传热系数数值模拟研究[J].核动力工程,2018,39(2):76-79.
    [5]WILLIAMSON R L.Enhancing the ABAQUS thermomec-hanics code to simulate multipellet steady and transient LWR fuel rod behavior[J].Journal of Nuclear Materials,2011,(415):74-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700