用户名: 密码: 验证码:
硅基纳米光镊结构的热分析和捕获特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermal Analysis and Trapping Properties of Silicon-Based Optical Nanotweezer Structures
  • 作者:朱晨俊 ; 宋五洲 ; 屈铭 ; 高奎 ; 杨敏君
  • 英文作者:Zhu Chenjun;Song Wuzhou;Qu Ming;Gao Kui;Yang Minjun;School of Materials Science and Engineering, Huazhong University of Science and Technology;
  • 关键词:表面光学 ; 硅基光镊 ; 光热效应 ; 光学捕获 ; 光学共振
  • 英文关键词:optics at surfaces;;silicon-based optical tweezers;;photothermal effect;;optical trapping;;optical resonance
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:华中科技大学材料科学与工程学院;
  • 出版日期:2018-11-23 09:01
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.444
  • 基金:华中科技大学2016人才引进基金(3004110112)
  • 语种:中文;
  • 页:GXXB201903046
  • 页数:8
  • CN:03
  • ISSN:31-1252/O4
  • 分类号:380-387
摘要
针对金属纳米光镊结构进行捕获时存在的光热效应问题,设计了一种硅基双纳米球的光镊结构。采用基于三维频域有限元的算法,对比分析了硅基双纳米球与金基双纳米球结构的增强场分布以及在对聚苯乙烯颗粒捕获势能相同条件下的热效应,发现硅基结构具有发热小、在高光场强度下捕获稳定性好的优点。对所设计的硅基双纳米球结构对聚苯乙烯颗粒的捕获特性进行模拟分析,在稳态场下研究了不同直径颗粒在不同位置受到的捕获力情况。研究结果表明,硅基纳米光镊结构在对微粒进行稳定捕获的同时可有效降低结构热效应带来的影响。
        In order to solve the problem that there exists the photothermal effect during the trapping by a metal optical nanotweezer structure, an optical tweezer structure with silicon-based double nanoballs is designed. The three-dimensional finite element method in frequency domain is used to compare and analyze the enhanced field distributions as well as the thermal effects under the same trapping potential energy of polystyrene nanoparticles for the structures with silicon-based double nanoballs and with gold-based double nanoballs. It is found that the silicon-based structure has a relatively low thermal effect and good trapping stability under a high light field intensity. The trapping of polystyrene nanoparticles by the designed silicon-based double nanoballs is simulated, and the trapping forces under a stable field at different positions of nanoparticles with different diameters are studied. The research results show that the silicon-based optical nanotweezer structure can trap nanoparticles stably and simultaneously suppress the structural thermal effects efficiently.
引文
[1] Ashkin A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 1970, 24(4): 156-159.
    [2] Dou X J, Min C J, Zhang Y Q, et al. Surface plasmon polaritons optical tweezers technology[J]. Acta Optica Sinica, 2016, 36(10): 1026004. 豆秀婕, 闵长俊, 张聿全, 等. 表面等离激元光镊技术[J]. 光学学报, 2016(10): 1026004.
    [3] Peng F. Theoretical study on optical trapping and application of optical tweezers[D]. Beijing: University of Chinese Academy of Sciences, 2011. 彭飞. 光学捕获理论及光镊的应用研究[D]. 北京: 中国科学院大学, 2011.
    [4] Zhong M C, Gong L, Zhou J H, et al. Optical trapping of red blood cells in living animals with a water immersion objective[J]. Optics Letters, 2013, 38(23): 5134-5137.
    [5] Li Y M, Gong L, Li D, et al. Progress in optical tweezers technology[J]. Chinese Journal of Lasers, 2015, 42(1): 0101001. 李银妹, 龚雷, 李迪, 等. 光镊技术的研究现况[J]. 中国激光, 2015, 42(1): 0101001.
    [6] Tao Z H, Ke K, Shi D Q, et al. Effect of environmental factors on staphyloxanthin biosynthesis based on laser tweezers Raman spectroscopy[J]. Laser & Optoelectronics Progress, 2017, 54(12): 123001. 陶站华, 柯珂, 师德强, 等. 利用光镊拉曼光谱研究环境因素对葡萄球菌黄素生物合成的影响[J]. 激光与光电子学进展, 2017, 54(12): 123001.
    [7] Zhang X Y, Zhang T, Hu A, et al. Controllable plasmonic antennas with ultra narrow bandwidth based on silver nano-flags[J]. Applied Physics Letters, 2012, 101(15): 153118.
    [8] Luo T J, Wan L Y, Huang J Q, et al. Shape optimization and analysis of sensing properties of localized surface plasmon resonances for triangle metal nanoparticles[J]. Acta Optica Sinica, 2013, 33(5): 0524002. 罗庭军, 万玲玉, 黄继钦, 等. 三角形金属纳米结构的局域表面等离共振传感特性与优化分析[J]. 光学学报, 2013, 33(5): 0524002.
    [9] Huang P B, Zou W D, Guo F, et al. Analysis of surface plasmon polaritons standing wave field induced by interference gaussian beams[J]. Acta Optica Sinica, 2011, 31(10): 1024003. 黄频波, 邹文栋, 郭斐, 等. 干涉高斯光诱导的表面等离子激元驻波场的分析[J]. 光学学报, 2011, 31(10): 1024003.
    [10] Zhang W C. Research on the photothermal properties of metal nanoparticles[D]. Hangzhou: Zhejiang University, 2014. 张位春. 金属纳米颗粒光热性质研究[D]. 杭州: 浙江大学, 2014.
    [11] Xie Y M. The coupling among different light scattering modes of a system of nanoparticles[D]. Hefei: University of Science and Technology of China, 2017. 解亚明. 纳米颗粒体系中光散射模式的耦合[D]. 合肥: 中国科学技术大学, 2017.
    [12] Schuller J A, Zia R, Taubner T, et al. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles[J]. Physical Review Letters, 2007, 99(10): 107401.
    [13] Cao L Y, Fan P Y, Barnard E S, et al. Tuning the color of silicon nanostructures[J]. Nano Letters, 2010, 10(7): 2649-2654.
    [14] Br?nstrup G, Jahr N, Leiterer C, et al. Optical properties of individual silicon nanowires for photonic devices[J]. ACS Nano, 2010, 4(12): 7113-7122.
    [15] Seo K, Wober M, Steinvurzel P, et al. Multicolored vertical silicon nanowires[J]. Nano Letters, 2011, 11(4): 1851-1856.
    [16] Evlyukhin A B, Reinhardt C, Seidel A, et al. Optical response features of Si-nanoparticle arrays[J]. Physical Review B, 2010, 82(4): 045404.
    [17] García-Etxarri A, Gómez-Medina R, Froufe-Pérez L S, et al. Strong magnetic response of submicron Silicon particles in the infrared[J]. Optics Express, 2011, 19(6): 4815-4826.
    [18] Luk′Yanchuk B S, Voshchinnikov N V, Paniagua-Domínguez R, et al. Optimum forward light scattering by spherical and spheroidal dielectric nanoparticles with high refractive index[J]. ACS Photonics, 2015, 2(7): 993-999.
    [19] Evlyukhin A B, Reinhardt C, Chichkov B N. Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation[J]. Physical Review B, 2011, 84(23): 235429.
    [20] van de Haar M A, van de Groep J, Brenny B J M, et al. Controlling magnetic and electric dipole modes in hollow silicon nanocylinders[J]. Optics Express, 2016, 24(3): 2047-2064.
    [21] Baffou G, Girard C, Quidant R. Mapping heat origin in plasmonic structures[J]. Physical Review Letters, 2010, 104(13): 136805.
    [22] Yamane M, Asahara Y, et al. Glasses for photonics[J]. Optics and Lasers in Engineering, 2005, 33:383-384.
    [23] Osten W. Photorefractive optics: materials, properties and applications[J]. Optics and Lasers in Engineering, 2000, 34(2): 129-130.
    [24] Gordon J P, Leite R C C, Moore R S, et al. Long-Transient effects in lasers with inserted liquid samples[J]. Journal of Applied Physics, 1965, 36(1): 3-8.
    [25] Griffiths D. Introduction to electrodynamics[M]. 4th ed. Boston: Prentice Hall, 1999:351-356.
    [26] Wu Z F, Liu Z H, Guo C K, et al. Numerical simulation and experiments of two fiber optical tweezers[J]. Acta Optica Sinica, 2008, 28(10): 1971-1976. 吴忠福, 刘志海, 郭成凯, 等. 两种单光纤光镊捕获效果的数值仿真与实验研究[J]. 光学学报, 2008, 28(10): 1971-1976.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700