青藏高原西部、南部和东北部边界地区天然水的水化学性质及其成因
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrochemical characteristics and factors controlling of natural water in the western, southern, and northeastern border areas of the Qinghai-Tibet Plateau
  • 作者:田原 ; 余成群 ; 查欣洁 ; 高星 ; 于明寨
  • 英文作者:TIAN Yuan;YU Chengqun;ZHA Xinjie;GAO Xing;YU Mingzhai;Lhasa National Ecological Research Station,Key Laboratory of Ecosystem Network Observation and Modelling,Institute of Geographic Sciences and Natural Resources Research,CAS;University of Chinese Academy of Sciences;State Key Laboratory of Resources and Environmental Information System,Institute of Geographic Sciences and Natural Resources Research,CAS;Research Institute of Agriculture,Tibet Academy of Agriculture and Animal Husbandry Sciences;
  • 关键词:青藏高原边界地区 ; 天然水 ; 水化学性质 ; 成因机制
  • 英文关键词:border area of the Qinghai-Tibet Plateau;;natural water;;hydrochemical characteristics;;controlling factors
  • 中文刊名:DLXB
  • 英文刊名:Acta Geographica Sinica
  • 机构:中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室西藏拉萨农田生态系统国家野外科学观测研究站;中国科学院大学;中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室;西藏自治区农牧科学院农业研究所;
  • 出版日期:2019-05-20 11:00
  • 出版单位:地理学报
  • 年:2019
  • 期:v.74
  • 基金:西藏重点研发与转化计划(XZ201901NB08);; 西藏科技重大专项(XZ201901NA03,XZ201801NA02)~~
  • 语种:中文;
  • 页:DLXB201905012
  • 页数:17
  • CN:05
  • ISSN:11-1856/P
  • 分类号:141-157
摘要
特殊的地理和人文环境致使青藏高原天然水拥有独特的水化学性质并保存着较完整的原生状态,但随着人类活动强度的持续增大,可能导致当地水环境及水化学性质发生改变。通过对青藏高原存在人类活动的西部、南部和东北部边界地区进行水样采集、分析与测定,并探讨了当地天然水水化学性质的区域差异及其成因规律。结果表明:青藏高原不同边界地区天然水的物理性质、水化学性质和成因均存在差异,这些差异主要是地理环境、地质条件等综合作用的结果;水样pH的平均值为7.75,总溶解固体(TDS)的均值为171 mg/L,总硬度(TH)的均值为168 mg/L,总体来看水质较好,大部分能够满足国家和世界卫生组织(WHO)生活饮用水卫生标准,适宜饮用;水样中Ca~(2+)和Mg~(2+)为主要阳离子,HCO_3~-和SO_4~(2-)为主要的阴离子,主要由碳酸盐的风化和蒸发岩的溶解共同控制且碳酸盐岩风化的过程更为强烈;各边界地区天然水中的生物源物质均远低于国家和WHO标准,表明目前这些地区受人类活动的影响仍较小。
        The special geographic and human environment of the Qinghai-Tibet Plateau has created the unique hydrochemical characteristics of the region's natural water, which has been preserved in a completely natural state. However, as the intensity of human activities in the region continued to increase, the water environment and hydrochemical characteristics on the plateau have changed. In this study, we collected, analyzed, and measured water samples in the western, southern, and northeastern border areas of the Qinghai-Tibet Plateau, where human activities are ongoing, and the regional differences and factors controlling them were investigated. The key results were obtained as follows.(1) There were differences in the physical properties and hydrochemical characteristics, and their controlling factors in the different boundary areas of this plateau. These differences were mainly caused by the effects of the geographical environment and geological conditions.(2) The average pH of the water samples was 7.75, the average total dissolved solid(TDS) content was 171 mg/L, and the average hardness(TH) content was 168 mg/L. Overall, the water quality was good and suitable for drinking, with most samples meeting national and WHO drinking water standards.(3) The main cations were Ca~(2+)and Mg~(2+) in water samples, while HCO_3~ -and SO_4~(2-) were the main anions. The chemical properties of water were mainly controlled by the weathering of carbonates and the dissolution of evaporative rocks, with the weathering of carbonate rocks being most influential.(4) The biological quality indicators of natural water in the border areas was far superior to national and WHO standards, which indicated that these areas were rarely affected by human activities.
引文
[1] Zheng Du, Tan Jian'an, Wang Wuyi. Environmental Geosciences Introduction. Beijing:Higher Education Press, 2007.[郑度,谭见安,王五一.环境地学导论.北京:高等教育出版社, 2007.]
    [2] Sun Honglie, Zheng Du, Yao Tandong, et al. Protection and construction of the national ecological security shelter zone on Tibetan plateau. Acta Geographica Sinica, 2012, 67(1):3-12.[孙鸿烈,郑度,姚檀栋,等.青藏高原国家生态安全屏障保护与建设.地理学报, 2012, 67(1):3-12.]
    [3] Tian Y, Yu C, Zha X, et al. Distribution and potential health risks of arsenic, selenium, and fluorine in natural waters in Tibet, China. Water, 2016, 8:568.
    [4] Zhang Xianzhou, He Yongtao, Shen Zhenxi, et al. Frontier of the ecological construction support the sustainable development in Tibet Autonomous Region. Bulletin of Chinese Academy of Sciences, 2015, 30(3):306-312.[张宪洲,何永涛,沈振西,等.西藏地区可持续发展面临的主要生态环境问题及对策.中国科学院院刊, 2015, 30(3):306-312.]
    [5] Sarin M M, Krishnaswami S, Dilli K, et al. Major ion chemistry of the Ganga-Brahmaputra River system:Weathering processes and fluxes to the Bay of Bengal. Geochimica et Cosmochimica Acta, 1989, 53(5):997-1009.
    [6] Sarin M M, Krishnaswami S. Major ion chemistry of the Ganga-Brahmaputra River systems, India. Nature, 1984, 312(5994):538-541.
    [7] Wang Lei. Study on hydrochemical characteristics and its influencing factors in Yarlung Tsangpo River Basin[D].Beijing:University of Chinese Academy of Sciences, 2016.[汪磊.雅鲁藏布江流域水化学特征及影响因素研究[D].北京:中国科学院大学, 2016.]
    [8] Wang Mingguo, Li Shehong, Wang Hui, et al. Distribution of arsenic in surface water in Tibet. Environmental Science,2012, 33(10):3411-3416.[王明国,李社红,王慧,等.西藏地表水中砷的分布.环境科学, 2012, 33(10):3411-3416.]
    [9] Li S, Wang M, Yang Q, et al. Enrichment of arsenic in surface water, stream sediments and soils in Tibet. Journal of Geochemical Exploration, 2012, 135(6):104-116.
    [10] Deng Wei. Research on fundamental characteristic of hydrochemistry in the region of the Changjiang River headwater.Scientia Geographica Sinica, 1988, 8(4):363-370.[邓伟.长江河源区水化学基本特征的研究.地理科学, 1988, 8(4):363-370.]
    [11] Cao Deyun. Yangtze River source area water environment and hydrochemistry background characteristic[D]. Beijing:China University of Geosciences(Beijing), 2013.[曹德云.长江源区水环境及水化学背景特征[D].北京:中国地质大学(北京), 2013.]
    [12] Wu W, Yang J, Xu S, et al. Geochemistry of the headwaters of the Yangtze River, Tongtianhe and Jinshajiang:Silicate weathering and co consumption. Applied Geochemistry, 2008, 23(12):3712-3727.
    [13] Tan Liwei, Li Fuxue, Liu Zhenping, et al. Study on groundwater characteristics and development in permafrost region of Tuotuo River. Yellow River, 2016, 38(5):62-67.[谭立渭,李富学,李振萍,等.沱沱河多年冻土区地下水特征及开发利用研究.人民黄河, 2016, 38(5):62-67.]
    [14] Hou Zhaohua, Xu Hai, An Zhisheng. Major ion chemistry of waters in Lake Qinghai catchment and the possible controls. Earth&Environment, 2009, 37(1):11-19.[侯昭华,徐海,安芷生.青海湖流域水化学主离子特征及控制因素初探.地球与环境, 2009, 37(1):11-19.]
    [15] Jin Z, Yu J, Wang S, et al. Constraints on water chemistry by chemical weathering in the lake qinghai catchment,northeastern Tibetan Plateau(China):Clues from Sr and its isotopic geochemistry. Hydrogeology Journal, 2009, 17(8):2037-2048.
    [16] Xiao J, Jin Z, Zhang F, et al. Major ion geochemistry of shallow groundwater in the Qinghai Lake catchment, NE Qinghai-Tibet Plateau. Environmental Earth Sciences, 2012, 67(5):1331-1344.
    [17] Zhe M, Zhang X, Wang B, et al. Hydrochemical regime and its mechanism in Yamzhog Yumco Basin, south Tibet.Journal of Geographical Sciences, 2017, 27(9):1111-1122.
    [18] Sun Rui, Zhang Xueqin, Wu Yanhong. Major ion chemistry of water and its controlling factors in the Yamzhog Yumco Basin, south Tibet. Journal of Lake Sciences, 2012, 24(4):600-608.[孙瑞,张雪芹,吴艳红.藏南羊卓雍错流域水化学主离子特征及其控制因素.湖泊科学, 2012, 24(4):600-608.]
    [19] Sun Rui, Zhang Xueqin, Zheng Du. Spatial variation and its causes of water chemical property in Yamzhog Yumco Basin, south Tibet. Acta Geographica Sinica, 2013, 68(1):36-44.[孙瑞,张雪芹,郑度.藏南羊卓雍错流域水化学区域差异及其成因.地理学报, 2013, 68(1):36-44.]
    [20] Zhang Xueqin, Sun Rui, Zhu Liping. Lake water in the Yamzhog Yumco Basin in South Tibetan region:Quality and evaluation. Journal of Glaciology and Geocryology, 2012, 34(4):950-958.[张雪芹,孙瑞,朱立平.藏南羊卓雍错流域主要湖泊水质状况及其评价.冰川冻土, 2012, 34(4):950-958.]
    [21] Ju J, Zhu L P, Wang J, et al. Water and sediment chemistry of Lake Pumayum Co, South Tibet, China:Implications for interpreting sediment carbonate. Journal of Paleolimnology, 2010, 43(3):463-474.
    [22] Zhu L, Ju J, Yong W, et al. Composition, spatial distribution, and environmental significance of water ions in Pumayum Co catchment, southern Tibet. Journal of Geographical Sciences, 2010, 20(1):109-120.
    [23] Gao Tanguang, Kang Shichang, Zhang Qianggong, et al. Major ionic features and their sources in the Nam Co Basin over the Tibetan Plateau. Environmental Science, 2008, 29(11):3009-3016.[高坛光,康世昌,张强弓,等.青藏高原纳木错流域河水主要离子化学特征及来源.环境科学, 2008, 29(11):3009-3016.]
    [24] Guo Junming, Kang Shichang, Zhang Qianggong, et al. Temporal and spatial variations of major ions in Nam Co Lake Water, Tibetan Plateau. Environmental Science, 2012, 33(7):2295-2302.[郭军明,康世昌,张强弓,等.青藏高原纳木错湖水主要化学离子的时空变化特征.环境科学, 2012, 33(7):2295-2302.]
    [25] Wang Junbo, Ju Jianting, Zhu Liping. Water chemistry variations of lake and inflowing rivers between preand postmonsoon season in Nam Co, Tibet. Scientia Geographica Sinica, 2013, 33(1):90-96.[王君波,鞠建廷,朱立平.季风期前后西藏纳木错湖水及入湖河流水化学特征变化.地理科学, 2013, 33(1):90-96.]
    [26] Yao Z, Rui W, Liu Z, et al. Spatial-temporal patterns of major ion chemistry and its controlling factors in the Manasarovar Basin, Tibet. Journal of Geographical Sciences, 2015, 26(6):687-700.
    [27] Tian Y, Yu C, Luo K, et al. Hydrochemical characteristics and element contents of natural waters in Tibet, China.Journal of Geographical Sciences, 2015, 25(6):669-686.
    [28] Guo Q, Wang Y. Hydrochemical anomaly of drinking waters in some endemic Kashin-Beck disease areas of Tibet,China. Environmental Earth Sciences, 2012, 65(3):659-667.
    [29] Zhang M, Gustafsson J E. The tibetan water environment:Water chemistry of some surface waters in southern Tibet.Ambio, 1995, 24(6):385-387.
    [30] Sheng Y, Rui Y, Yu Y. Heavy metal pollution in water of rivers and lake in Tibet by ICP-MS. Asian Journal of Chemistry, 2012, 24(11):5403-5404.
    [31] Li Shunjiang, Yang Linsheng, Wang Wuyi, et al. Study on the relationship between selenium concentrations in drinking water and Kaschin-Beck disease in Tibet. Chinese Journal of Endemiology, 2006, 25(4):428-429.[李顺江,杨林生,王五一,等.西藏大骨节病与饮水硒关系研究.中华地方病学杂志, 2006, 25(4):428-429.]
    [32] Grange M L, Mathieu F, Begaux F, et al. Kashin-Beck disease and drinking water in central Tibet. International Orthopaedics, 2001, 25(3):167-169.
    [33] Cao J, Zhao Y, Liu J, et al. Fluoride concentrations of water sources in Tibet. Fluoride, 2000, 33(4):205-209.
    [34] Zhao T, Chen Y, Yao W, et al. The spatiotemporal distribution of two bacterial indexes in a small Tibetan Plateau watershed. Water, 2017, 9(11):823.
    [35] Nie Lixia. Analysis of microbial indicators of drinking water in rural areas of six counties in Tibet. Tibet Medical Journal, 2011, 32(1):56-57.[聂立夏.西藏6县农村生活饮用水微生物指标分析.西藏医药, 2011, 32(1):56-57.]
    [36] Zhang Xianying, Li Xiaoju, Bu Du, et al. Analysis on sanitary surveillance of drinking water quality in Nyingchi region of Tibet in 2011. Tibet Medical Journal, 2013, 34(1):62-64.[张宪英,李晓菊,布都,等. 2011年西藏林芝地区生活饮用水水质卫生监测分析.西藏医药, 2013, 34(1):62-64.]
    [37] Zhang Yili, Li Bingyuan, Zheng Du. A discussion on the boundary and area of the Tibetan Plateau in China.Geographical Research, 2002, 21(1):1-8.[张镱锂,李炳元,郑度.论青藏高原范围与面积.地理研究, 2002, 21(1):1-8.]
    [38] Lu Yan, Li Yubin, Mimapuchi, et al. Evolution of structural geology and metallogenic unite, Xizang(Tibet)Autonomous Region. Geological Review, 2016, 62(b11):219-220.[陆彦,李玉彬,米玛普尺,等.西藏自治区的构造地质演化和成矿地质单元划分.地质论评, 2016, 62(b11):219-220.]
    [39] National Bureau of Statistics of People's Republic of China, China Statistical Yearbook-2017. Beijing:China Statistics Press, 2017.[中华人民共和国国家统计局.中国统计年鉴-2017.北京:中国统计出版社, 2017.]
    [40] Tang Qicheng, He Xiwu, Zhao Chunian. Water Resources on the Tibetan Plateau. Beijing:China Tibetology Publishing House, 2003.[汤奇成,何希吾,赵楚年.青藏高原的水资源.北京:中国藏学出版社, 2003.]
    [41] Ministry of Health of the People's Republic of China, Standardization Administration of the People's Republic of China.Standards Examination Methods for Drinking Water. 2006, GB/T 5750-2006.[中华人民共和国卫生部,中国国家标准化管理委员会.生活饮用水标准检验方法. 2006, GB/T 5750-2006.]
    [42] Ministry of Health of the People's Republic of China, Standardization Administration of the People's Republic of China.Standards for Drinking Water Quality. 2006, GB 5749-2006.[中华人民共和国卫生部,中国国家标准化管理委员会.生活饮用水卫生标准. 2006, GB 5749-2006.]
    [43] Ministry of Environment Protection of the People's Republic of China. Methods for Chemical Analysis of Water and Waste Water. Beijing:China Environmental Science Press, 2002.[国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法.北京:中国环境出版社, 2013.]
    [44] EPA, U S. Determination of Inorganic Anions by Ion Chromatography. Ohio:Environmental Protection Agency Environmental Monitoring Systems Laboratory Office of Research and Decelopment, 1993.
    [45] Shen Zhaoli. Hydrogeochemical Basis. 3rd ed. Beijing:Geological Publishing House, 1993.[沈照理.水文地球化学基础. 3版.北京:地质出版社, 1993.]
    [46] Li S, Zhang Q. Geochemistry of the upper Han River Basin, China, 1:Spatial distribution of major ion compositions and their controlling factors. Applied Geochemistry, 2008, 23(12):3535-3544.
    [47] Chen J, Wang F, Xia X, et al. Major element chemistry of the Changjiang(Yangtze River). Chemical Geology, 2002,187:231-255.
    [48] WHO. Guidelines for Drinking Water Quality. Geneva:World Health Organization, 2008.
    [49] Piper A M. A graphic procedure in the geochemical interpretation of water‐analyses. Eos, Transactions American Geophysical Union, 1944, 25(6):914-928.
    [50] Gibbs R J. Mechanisms controlling world water chemistry. Science, 1970, 170(3962):1088-1090.
    [51] Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 1987, 287(5):401-428.
    [52] Dalai T K, Krishnaswami S, Sarin M M. Major ion chemistry in the headwaters of the Yamuna River system:Chemical weathering, its temperature dependence and CO2consumption in the Himalaya. Geochimica et Cosmochimica Acta,2002, 66(19):3397-3416.
    [53] Meybeck M, Helmer R. The quality of rivers:From pristine stage to global pollution. Palaeogeography Palaeoclimatology Palaeoecology, 1989, 75(4):283-309.
    [54] Ahmad T, Khanna P P, Chakrapani G J, et al. Geochemical characteristics of water and sediment of the Indus River,Trans-himalaya, India:Constraints on weathering and erosion. Journal of Asian Earth Sciences, 1998, 16(2-3):333-346.
    [55] Reeder S W, Hitchon B, Levinson A A. Hydrogeochemistry of the surface waters of the Mackenzie River drainage basin, Canada-I. Factors controlling inorganic composition. Geochimica et Cosmochimica Acta, 1972, 36(8):825-865.
    [56] Zhu Bingqi, Yang Xiaoping. Chemical characteristics and origin of natural water in the Taklimakan Desert. Chinese Science Bulletin, 2007, 52(13):1561-1566.[朱秉启,杨小平.塔克拉玛干沙漠天然水体的化学特征及其成因.科学通报, 2007, 52(13):1561-1566.]
    [57] Nemeth A, Paolini J, Herrera R. Carbon transport in the Orinoco River:The preliminary results. In:Nairobi, Kenya:Scientific Committee on Problems of the Environment/United Nations Environment Programme Sonderband Heft,1982.
    [58] Katz B G, B?hlke J K, Hornsby H D. Timescales for nitrate contamination of spring waters, northern Florida, USA.Chemical Geology, 2001, 179:167-186.
    [59] B?hlke J K, Denver J M. Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resources Research, 1995, 31(9):2319-2339.
    [60] Holloway J M, Dahlgren R A, Hansen B, et al. Contribution of bedrock nitrogen to high nitrate concentrations in stream water. Nature, 1998, 395:785-788.
    [61] Roy S, Gaillardet J, Allègre C J. Geochemistry of dissolved and suspended loads of the Seine River, France:Anthropogenic impact, carbonate and silicate weathering. Geochimica et Cosmochimica Acta, 1999, 63(9):1277-1292.
    [62] Cruz J V L, Amaral C S. Major ion chemistry of groundwater from perched-water bodies of the Azores(Portugal)volcanic archipelago. Applied Geochemistry, 2004, 19(3):445-459.
    [63] Yao T, Thompson L G, Qin D, et al. Variations in temperature and precipitation in the past 2000 a on the Xizang(Tibet)Plateau:Guliya ice core record. Science in China(Series D), 1996, 39(4):425-433.
    [64] Chang Huiqin, Xu Wenyong, Yuan Jie, et al. Current situation of grassland resources and grazing capacity in Ali, Tibet.Pratacultural Science, 2012, 29:1660-1664.[畅慧勤,徐文勇,袁杰,等.西藏阿里草地资源现状及载畜量.草业科学,2012, 29(11):1660-1664.]
    [65] Meenakshi, Maheshwari R C. Fluoride in drinking water and its removal. Journal of Hazardous Materials, 2006, 137(1):456-463.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700