用户名: 密码: 验证码:
火箭燃料贮箱热力学排气系统控压性能仿真研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation Research on Pressure Control Performance of Thermodynamic Venting System of Rocket Propellant Tank
  • 作者:夏斯琦 ; 孙培杰 ; 李鹏 ; 王长焕 ; 王磊 ; 厉彦忠
  • 英文作者:Xia Siqi;Sun Peijie;Li Peng;Wang Changhuan;Wang Lei;Li Yanzhong;School of Energy and Power Engineering,Xi'an Jiaotong University;Shanghai Institute of Aerospace System Engineering;
  • 关键词:低温推进剂 ; 压力控制 ; CFD仿真 ; 微重力
  • 英文关键词:cryogenic propellant;;pressure control;;CFD simulation;;microgravity
  • 中文刊名:ZLXB
  • 英文刊名:Journal of Refrigeration
  • 机构:西安交通大学能源与动力工程学院;上海宇航系统工程研究所;
  • 出版日期:2019-06-16
  • 出版单位:制冷学报
  • 年:2019
  • 期:v.40;No.187
  • 基金:国家自然科学基金(51376142,51406142)资助项目~~
  • 语种:中文;
  • 页:ZLXB201903015
  • 页数:6
  • CN:03
  • ISSN:11-2182/TB
  • 分类号:112-117
摘要
本文介绍了低温推进剂在轨管理中热力学排气系统(thermodynamic venting system,TVS)的构成及工作原理。基于VOF模型,编写用户自定义程序考虑箱内存在的热质传递现象,采用CFD模拟贮箱内部的压力变化和温度场分布。构建的CFD模型能够较好地模拟TVS的工作特性,证明CFD研究的有效性。针对不同液体初始充灌率、节流条件等影响因素进行变工况模拟,揭示TVS的工作规律。计算TVS在微重力下的控压性能,验证其在微重力下的可行性并获得运行规律。
        This article described the composition and working principle of the thermodynamic venting system( TVS) for the in-orbit management of cryogenic propellants. Based on the volume of fluid( VOF) multiphase model,a user-defined function( UDF) was compiled to consider the heat and mass transfer phenomena inside the tank,and computational fluid dynamics( CFD) was applied to simulate the pressure evolution and temperature field distribution in the tank during the TVS operation. A comparison study showed that the CFD model could well simulate the characteristics of the TVS,which might verify the effectiveness of the CFD approach in analyzing TVS performance.Moreover,the variable conditions of different initial liquid filling rate,throttling ratios,and other influencing factors were simulated to reveal the working rules of the TVS. The pressure control performance of the TVS under microgravity was also calculated. The feasibility of the TVS under microgravity was verified,and its operational rules were obtained.
引文
[1] CHATO D J. Cryogenic technology development for exploration missions[C]//45th AIAA Aerospace Sciences Meeting and Exhibit Reno. Nevada:AIAA,2007.
    [2] HASTINGS L J,TUCKER S P,FLACHBART R H,et al.Marshall space flight center in-space cryogenic fluid management program overview[R]. Arizona:AIAA,2005.
    [3] CADY E C. Study of thermodynamic vent and screen baffle integration for orbital storage and transfer of liquid hydrogen[R]. Washington,DC,USA:National Aeronautics and Space Administration,1973:1-24.
    [4] CADY E C. Design of thermodynamic vent/screen baffle cryogenic storage system[J]. Journal of Spacecraft and Rockets,1975,12(8):501-502.
    [5] HEDAYAT A,BAILEY J W,HASTINGS L J,et al. Test data analysis of a spray bar zero-gravity liquid hydrogen vent system for upper stages[C]//AIP Conference Proceedings. New York:American Institute of Physics,2004:1171-1178.
    [6] FLACHBART R H,HASTINGS L J,HEDAYAT A,et al.Testing the effects of helium pressurant on thermodynamic vent system performance with liquid hydrogen[C]//AIP conference Proceedings. Chattanooga:American Institute of Physics,2008:1483-1490.
    [7] VAN DRESAR N T. Liquid oxygen thermodynamic vent system testing with helium pressurization[R]. Washington,DC,USA:National Aeronautics and Space Administration,2014:1-39.
    [8] FLACHBART R H,H ASTINGS L J,HEDAYAT A,et al.Testing of a spray-bar thermodynamic vent system in liquid nitrogen[C]//AIP Conference Proceedings. New York:American Institute of Physics,2006:240-247.
    [9] FLACHBART R H,HASTINGS L J,HEDAYAT A,et al.Thermodynamic vent system performance testing with subcooled liquid methane and gaseous helium pressurant[J].Cryogenics,2008,48(5):217-222.
    [10] GRAYSON G,LOPEZ A,CHANDLER F,et al. CFD modeling of helium pressurant effects on cryogenic tank pressure rise rates in normal gravity[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Cincinnati:AIAA,2007:8-11.
    [11] KARTUZOVA O V,KASSEMI M,MODER J P,et al.Self-pressurization and spray cooling simulations of the Multipurpose Hydrogen Test Bed(MHTB)ground-based experiment[C]//Proceedings of 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston,VA,USA:AIAA,2014:1-19.
    [12]胡伟峰,申麟,彭小波,等.低温推进剂长时间在轨的蒸发量控制关键技术分析[J].低温工程,2011(3):59-66.(HU Weifeng,SHEN Lin,PENG Xiaobo,et al.Key technology analysis of boil-off control study on cryogenic propellant long-term application on orbit[J]. Cryogenics,2011(3):59-66.)
    [13]马原,厉彦忠,王磊,等.低温燃料贮箱热力学排气系统优化分析与性能研究[J].低温与超导,2014(7):10-15.(MA Yuan,LI Yanzhong,WANG Lei,et al. Optimized analysis and performance study on thermodynamic vent system in cryogenic fuel tank[J]. Cryogenics&Superconductivity,2014(7):10-15.)
    [14]陈忠灿,黄永华,汪彬,等.热负荷对R141b热力学排气系统自增压特性及排气损失的影响[J].化工学报,2016,67(10):4047-4054.(CHEN Zhongcan,HUANG Yonghua,WANG Bin,et al. Effect on self-pressurization characteristics and mass loss of thermodynamic vent system for refrigerant R141b by heat load[J]. CIESC Journal,2016,67(10):4047-4054.)
    [15]刘展,张少华,张晓屿,等.地面热力学排气系统实验研究[J].西安交通大学学报,2017,51(7):8-15.(LIU Zhan,ZHANG Shaohua,ZHANG Xiaoyu,et al. Experimental research on the ground thermodynamic vent system[J]. Journal of Xi'an Jiaotong University,2017,51(7):8-15.)
    [16] HASTINGS L J,FLACHBART R H,MARTIN J J,et al.Spray bar zero-gravity vent system for on-orbit liquid hydrogen storage[R]. NASA/TM,2003.
    [17] NGUYEN H. Zero-g thermodynamic venting system(TVS)performance prediction program[R]. Rockwell Aerospace:NASA,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700