用户名: 密码: 验证码:
镉胁迫对芹菜生理特性及细胞超微结构的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of cadmium stress on physiological property and cell ultrastructure of celery
  • 作者:徐劼 ; 段德超
  • 英文作者:Xu Jie;
  • 关键词:芹菜 ; ; 富集系数 ; 超微结构 ; 生理特性 ; 转运能力 ; 细胞
  • 中文刊名:JSNY
  • 英文刊名:Jiangsu Agricultural Sciences
  • 机构:嘉兴学院生物与化学工程学院;浙江博世华环保科技有限公司;
  • 出版日期:2019-04-01 10:17
  • 出版单位:江苏农业科学
  • 年:2019
  • 期:v.47
  • 基金:浙江省嘉兴市科技计划(编号:2017BY18065)
  • 语种:中文;
  • 页:JSNY201905024
  • 页数:5
  • CN:05
  • ISSN:32-1214/S
  • 分类号:103-107
摘要
采用水培试验,研究不同浓度镉(Cd)胁迫下Cd在芹菜不同器官组织中的积累及对芹菜生理生化指标、细胞超微结构的影响。结果表明,Cd浓度为40 mg/L时,芹菜叶、茎、根中的Cd含量相对最高,分别为16.36、65.78、213.06 mg/L;Cd浓度为10 mg/L时,芹菜对Cd的富集和转运能力相对最强,富集系数、转运系数分别为5.83、0.62,同时,叶绿素a、叶绿素b、总叶绿素含量处于最高水平;Cd胁迫导致芹菜叶片细胞壁内侧模糊,轮廓不饱满,淀粉颗粒增大、变多,叶绿体出现肿胀,且基粒类囊体呈波浪状,并处于解离状态,而根尖细胞的细胞基质变稀,液泡数量明显增多,细胞核仁消失,染色质外溢,线粒体出现肿胀;Cd胁迫浓度分别为5、10、20、40 mg/L时,芹菜叶组织中的可溶性蛋白含量分别为清水处理(CK)的98.73%、96.55%、91.28%、86.16%,而根中的蛋白含量分别为对照的99.74%、109.98%、132.76%、157.18%;随Cd胁迫浓度的增大,芹菜的根系活力逐渐降低,与CK相比分别显著下降15.33%、57.72%、58.69%、70.59%(P<0.05)。
        
引文
[1]Jin Y H,Clark A B,Slebos R J,et al.Cadmium is a mutagen that acts by inhibiting mismatch repair[J].Nature Genetics,2003,34(3):326-329.
    [2]Basa B,Lattanzio G,Solti A,et al.Changes induced by cadmium stress and iron deficiency in the composition and organization of thylakoid complexes in sugar beet(Beta vulgaris L.)[J].Environmental and Experimental Botany,2014,101(5):1-11.
    [3]肖旭峰,解庆娓,范淑英,等.镉、铅胁迫对芹菜生长及抗氧化酶活性的影响[J].江西农业大学学报,2015,37(5):793-797.
    [4]徐劼,保积庆.芹菜根细胞壁对镉的吸附固定机制及其FTIR表征研究[J].环境科学学报,2015,35(8):2605-2612.
    [5]Du R J,He E K,Tang Y T,et al.How phytohormone IAA and chelator EDTA affect lead uptake by Zn/Cd hyperaccumulator Picris divaricate[J].International Journal of Phytoremediation,2011,13(10):1024-1036.
    [6]张静,赵秀侠,汪翔,等.重金属镉(Cd)胁迫对水芹生长及生理特性的影响[J].植物生理学报,2015,51(11):1969-1974.
    [7]王国栋,陈云,梁飞,等.控墒补灌对新疆春玉米产量和穗叶光合特性的影响[J].应用生态学报,2016,27(8):2499-2506.
    [8]徐臣善.钙对盐胁迫下小金海棠幼苗生物量及抗氧化系统的影响[J].植物生理学报,2014,50(6):817-822.
    [9]程海宽,张彪,景鑫鑫,等.玉米对铅胁迫的响应及体内铅化学形态研究[J].环境科学,2015,36(4):1468-1473.
    [10]Yamauchi T,Watanabe K,Fukazawa A,et al.Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions[J].Journal of Exprimental Botany,2014,65(1):261-273.
    [11]徐劼.茶树(Camellia sinensis L.)对铅的吸收累积及耐性机制研究[D].杭州:浙江大学,2011.
    [12]Xu C,Chen X,Duan D,et al.Effect of heavy-metal-resistant bacteria on enhanced metal uptake and translocation of the Cutolerant plant,Elsholtzia splendens[J].Environmental Science and Pollution Research,2015,22(7):5070-5081.
    [13]邹金华,张忠贵,魏爱琪.毛葱的镉吸收积累及亚细胞分布特征[J].天津师范大学学报(自然科学版),2014,34(1):72-77.
    [14]Yin A G,Yang Z Y,Ebbs S,et al.Effects of phosphorus on chemical forms of Cd in plants of four spinach(Spinacia oleracea L.)cultivars differing in Cd accumulation[J].Environmental Science and Pollution Research,2016,23(6):5753-5762.
    [15]Wang A Y,Wang M Y,Liao Q,et al.Characterization of Cd translocation and accumulation in 19 maize cultivars grown on Cdcontaminated soil:implication of maize cultivar selection for minimal risk to human health and for phytoremediation[J].Environmental Science and Pollution Research,2016,23(6):5410-5419.
    [16]Huang B F,Xin J L,Dai H W,et al.Root morphological responses of three hot pepper cultivars to Cd exposure and their correlations with Cd accumulation[J].Environmental Science and Pollution Research,2015,22(2):1151-1159.
    [17]刘卫国,丁俊祥,邹杰,等.Na Cl对齿肋赤藓叶肉细胞超微结构的影响[J].生态学报,2016,36(12):3556-3563.
    [18]Nash W W,Poor B W,Jenkins K D.The uptake and subcellulardistribution of lead in developing sea-urchin embryos[J].Comparative Biochemistry and Physiology Part C:Comparative Pharmacology,1981,69(2):205-211.
    [19]Brain G S,Martin S W.Ultrastructure and the biology of plant cells[M].New York:Edward Arnold,1975.
    [20]Yao Y C,Wang S H,Kong Y.Characteristics of photosynthesis mechanism in different peach species under low light intensity[J].Scientia Agricultura Sinica,2007,40(4):855-863.
    [21]Asada K.The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons[J].Annual Review of Plant Biology,1999,50:601-639.
    [22]Jiang M Y,Yang W Y,Xu J.Active oxygen damage effect of chlorophyll degradation in rice seedlings under osmotic stress[J].Acta Botanica Sinica,1994,36(4):289-295.
    [23]Hall J L.Electron microscopy and cytochemistry of plant cells[M].New York:North-holland Biomedical Press,1978.
    [24]段昌群,王焕校.重金属对蚕豆的细胞遗传学毒理作用和对蚕豆根尖微核技术的探讨[J].植物学报,1995,37(1):14-24.
    [25]侯江涛,高启明,克热木·伊力.Na Cl胁迫对两种扁桃幼苗根系K+、Na+、Cl-含量和超微结构的影响[J].北方园艺,2014(23):1-5.
    [26]宇克莉,孟庆敏,邹金华.镉对玉米幼苗生长、叶绿素含量及细胞超微结构的影响[J].华北农学报,2010,25(3):118-123.
    [27]李铮铮,伍钧,唐亚,等.铅、锌及其交互作用对鱼腥草(Houttuynia cordata)叶绿素含量及抗氧化酶系统的影响[J].生态学报,2007,27(12):5441-5446.
    [28]Bhaduri A M,Fulekar M H.Antioxidant enzyme responses of plants to heavy metal stress[J].Reviews in Environmental Science and Biotechnology,2012,11(1):55-69.
    [29]彭玲,贾芬,田小平,等.硒对油菜根尖镉胁迫的缓解作用[J].环境科学学报,2015,35(8):2597-2604.
    [30]董如茵,徐应明,王林,等.土施和喷施锌肥对镉低积累油菜吸收镉的影响[J].环境科学学报,2015,35(8):2589-2596.
    [31]郭艳丽,台培东,韩艳萍,等.镉胁迫对向日葵幼苗生长和生理特性的影响[J].环境工程学报,2009,3(12):2291-2296.
    [32]李佩华,刘小文.重金属铅、镉胁迫对马铃薯生长及抗氧化酶系统的影响[J].云南农业大学学报(自然科学版),2014,29(5):746-751.
    [33]吴桂容,严重玲.镉对桐花树幼苗生长及渗透调节的影响[J].生态环境,2006,15(5):1003-1008.
    [34]Bartolf M,Brennan E,Price C A.Partial characterization of a cadmium-binding protein from the roots of cadmium-treated tomato[J].Plant Physiology,1980,66(3):438-441.
    [35]Wang X E,Shi G X,Xu Q S,et al.Exogenous polyamnines enhance copper tolerance of Nymphoides peltatum[J].Journal of Plant Physiology,2007,164(8):1062-1070.
    [36]王玉凤,王庆祥,商丽威.钙对Na Cl胁迫下玉米幼苗根系活力和有机渗透调节物质含量的影响[J].玉米科学,2008,16(2):66-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700