用户名: 密码: 验证码:
隧道爆破荷载作用下中隔壁动力响应与破坏机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic Response and Destruction Mechanism of Center Diaphragm Support Wall Under Tunnel Blasting
  • 作者:侯福金 ; 李术才 ; 管晓明 ; 蒋庆 ; 周昆 ; 张良 ; 牟犇
  • 英文作者:HOU Fu-jin;LI Shu-cai;GUAN Xiao-ming;JIANG Qing;ZHOU Kun;ZHANG Liang;MOU Ben;School of Civil Engineering, Shandong University;Shandong Highspeed Ji-Lai Intercity Highway Co., Ltd.;School of Civil Engineering, Qingdao University of Technology;
  • 关键词:隧道工程 ; 动力响应 ; 破坏机理 ; 流固耦合 ; 中隔壁支护结构 ; 破坏形态
  • 英文关键词:tunnel engineering;;dynamic response;;destruction mechanism;;fluid-solid coupling algorithm;;center diaphragm support wall;;destruction pattern
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:山东大学土建与水利学院;山东高速济莱城际公路有限公司;青岛理工大学土木工程学院;
  • 出版日期:2019-03-15
  • 出版单位:中国公路学报
  • 年:2019
  • 期:v.32;No.187
  • 基金:国家自然科学基金项目(51708317,51708318);; 中国博士后科学基金项目(2017M621095,2017M612226);; 山东省泰山学者优势特色学科人才团队青年探索项目
  • 语种:中文;
  • 页:ZGGL201903013
  • 页数:9
  • CN:03
  • ISSN:61-1313/U
  • 分类号:113-121
摘要
中隔壁结构作为隧道初期支护体系中重要的承载构件,在隧道爆破荷载作用下极易发生损伤开裂和破坏。首先依托双向八车道的港沟高速公路隧道工程,进行爆破荷载作用下中隔壁的动力损伤破坏试验,提出中隔壁支护结构的破坏形态及类型;然后利用ANSYS/LS-DYNA建立隧道爆破与中隔壁支护结构数值模型,采用流固耦合的方法模拟岩体爆破及中隔壁支护结构的动力响应,并考虑单段装药量、爆距等不同因素,研究其对中隔壁破坏模式及形态的影响。研究结果表明:隧道爆破荷载作用下中隔壁破坏形式分为背爆侧混凝土开裂剥落、中心区域混凝土震塌成洞、钢筋网及纵向连接钢筋震坏断裂、钢拱架发生扭曲变形4种类型;中隔壁支护结构在爆破应力波的作用下处于反复拉压状态,并在岩石破碎抛掷冲击的作用下发生破坏,且中隔壁支护结构中心、顶部和底部是结构最易发生损伤的部位;单段装药量和爆距的改变会对中隔壁支护结构的破坏范围和破坏程度产生影响,且结构呈现出不同的破坏形态,与现场试验结果一致;建议隧道爆破施工时爆距控制在40 cm以上,单段药量控制在7.2 kg以下,以减少对中隔壁支护结构的破坏。
        A center diaphragm support wall is an important part of a tunnel's initial support system. However, it is extremely susceptible to damage and developing cracks under tunnel blasting. In this Ganggou Tunnel of 8-lane dual highway project, field tests were performed within the framework of a blasting project for a highway tunnel to study the dynamic response of center diaphragm support walls, and different failure modes were obtained. The ANSYS/LS-DYNA software was used to simulate a model for center diaphragm support walls. A fluid-solid coupling algorithm was selected to simulate the process of rock blasting and the dynamic response of center diaphragm support walls. Different single period charges and distances were considered. The results indicate that the failure modes can be divided into four types, namely, concrete crack, concrete crush, rebar break, and steel arch distortion. Center diaphragm support walls endure repeated tension and pressure under blasting stress waves, and the impact of rock fragmentation and throw is the primary reason for their failure. Moreover, the center and four sides of center diaphragm support walls are extremely susceptible to damage. Changes in the single period charge and distance affect the scope and degree of failure, resulting in different failure modes. The results of numerical simulation are consistent with those obtained from the field test, and indicate that the optimum blasting distance is larger than 40 cm, while the single period charge should be limited to <7.2 kg.
引文
[1] 黄玉锋,舒大强,陈维炎.爆破震动作用下地下洞室支护结构的动态响应分析[J].爆破,2006,23(1):14-18. HUANG Yu-feng, SHU Da-qiang, CHEN Wei-yan. Effect of Blasting Vibration on the Support Structure of an Underground Chamber [J]. Blasting, 2006, 23 (1): 14-18.
    [2] 王淼,安志晓,傅鸣春,等.爆破震动下地下工程围岩稳定与支护设计[J].地下空间与工程学报,2015,11(2):530-535. WANG Miao, AN Zhi-xiao, FU Ming-chun, et al. Stability of Surrounding Rock and Support Design in Underground Project Under Blasting Vibration [J]. Chinese Journal of Underground Space and Engineering, 2015, 11 (2): 530-535.
    [3] 吕鸿,王建.隧道爆破冲击对不同厚度初期支护Mises应力的影响[J].公路,2016(10):268-270. LYU Hong, WANG Jian. Influence of Tunnel Blasting Impact on Mises Stress in Initial Support at Different Thickness [J]. Highway, 2016 (10): 268-270.
    [4] 冷冰林,许金余,段吉祥,等.爆炸荷载作用下拱形结构的动力响应分析[J].弹箭与制导学报,2010,30(3):59-62. LENG Bing-lin, XU Jin-yu, DUAN Ji-xiang, et al. The Analysis of Arch Structure Subjected to Blast Loading [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2010, 30 (3): 59-62.
    [5] 马林建,刘新宇,马千里,等.爆炸荷载作用下岩石介质中大跨度被覆结构动力响应分析[J].煤炭学报,2011,36(增2):416-420. MA Lin-jian, LIU Xin-yu, MA Qian-li, et al. On Dynamic Responses of Large-span Revetment Structures Subjected to Blast Loads in Rock Medium [J]. Journal of China Coal Society, 2011, 36 (S2):416-420.
    [6] 夏谦,卢成,黄正刚.隧道内爆炸作用衬砌结构的动力响应和损伤机理研究[J].现代隧道技术,2012,49(6):75-81. XIA Qian, LU Cheng, HUANG Zheng-gang. Investigation of the Dynamic Response and Damage Mechanism of the Lining Structure to an Explosion Inside the Tunnel [J]. Modern Tunnelling Technology, 2012, 49 (6): 75-81.
    [7] 孙惠香,许金余,朱国富,等.爆炸荷载作用下围岩与地下结构的动力相互作用[J].爆炸与冲击,2013,33(5):519-524. SUN Hui-xiang, XU Jin-yu, ZHU Guo-fu, et al. Dynamic Interaction Between Surrounding Rock and Underground Structure Subjected to Blast Loading [J]. Explosion and Shock Waves, 2013, 33 (5): 519-524.
    [8] 孙惠香,路锋,迟维胜,等.爆炸冲击波作用下围岩与被覆结构的动力相互作用[J].爆炸与冲击,2017,37(4):670-676. SUN Hui-xiang, LU Feng, CHI Wei-sheng, et al. Dynamic Interaction Between Surrounding Rock and Initial Supporting Structure Subjected to Explosion Shock Wave [J]. Explosion and Shock Waves, 2017, 37 (4): 670-676.
    [9] BERTA G. Blasting-induced Vibration in Tunnelling [J]. Tunnelling and Underground Space Technology, 1994, 9 (2): 175-187.
    [10] 江见鲸,陆新征.混凝土结构有限元分析[M].2版.北京:清华大学出版社,2013. JIANG Jian-jing, LU Xin-zhang. Finite Element Analysis of Concrete Structures [M]. 2nd ed. Beijing: Tsinghua University Press, 2013.
    [11] 时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA 8.1进行显式动力分析[M].北京:清华大学出版社,2005. SHI Dang-yong, LI Yu-chun, ZHANG Sheng-min. Explicit Dynamic Analysis based on ANSYS/LS-DYNA 8.1 [M]. Beijing: Tsinghua University Press, 2005.
    [12] Livermore Software Technology Corporation. LS-DYNA Keyword User's Manual R8.0 [M]. Livermore: Livermore Software Technology Corporation, 2015.
    [13] 张秀华,张春巍,段忠东.爆炸荷载作用下钢框架柱冲击响应与破坏模式的数值模拟[J].沈阳建筑大学学报:自然科学版,2009,25(4):656-662. ZHANG Xiu-hua, ZHANG Chun-wei, DUAN Zhong-dong. Shock Response and Failure Modes of Steel Frame Columns Under Blast Load [J]. Journal of Shenyang Jianzhu University: Natural Science, 2009, 25 (4): 656-662.
    [14] 白金泽.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005. BAI Jin-ze. Theoretical Basis and Case Analysis of LS-DYNA3D [M]. Beijing: Science Press, 2005.
    [15] 方秦,孔祥振,吴昊,等.岩石Holmquist-Johnson-Cook模型参数的确定方法[J].工程力学,2014,31(3):197-204. FANG Qin, KONG Xiang-zhen, WU Hao, et al. Determination of Holmquist-Johnson-Cook Constitutive Model Parameters of Rock [J]. Engineering Mechanics, 2014, 31 (3): 197-204.
    [16] BORRVALL T. The RHT Concrete Model in LS-DYNA [C]// Strasbourg University. European LS-DYNA Users Conference. Strasbourg: Strasbourg University. 2011: 1-14.
    [17] 夏祥,李海波,李俊如,等.岩体爆生裂纹的数值模拟[J].岩土力学,2006,27(11):1987-1991. XIA Xiang, LI Hai-bo, LI Jun-ru, et al. Numerical Simulation of Blast-induced Cracks in Rock [J]. Rock and Soil Mechanics, 2006, 27 (11): 1987-1991.
    [18] 孙其然,李芮宇,赵亚运,等.HJC模型模拟钢筋混凝土侵彻实验的参数研究[J].工程力学,2016,33(8):248-256. SUN Qi-ran, LI Rui-yu, ZHAO Ya-yun, et al. Investigation on Parameters of HJC Model Applied to Simulate Perforation Experiments of Reinforced Concrete [J]. Engineering Mechanics, 2016, 33 (8): 248-256.
    [19] 王鹏,周传波,耿雪峰,等.多孔同段爆破漏斗形成机理的数值模拟研究[J].岩土力学,2010,31(3):993-997. WANG Peng, ZHOU Chuan-bo, GENG Xue-feng, et al. Numerical Simulation of Formation Mechanism of Multi Hole and Same Delay Time of Blasting Crater [J]. Rock and Soil Mechanics, 2010, 31 (3): 993-997.
    [20] KUTTER H K, FAIRHURST C. On the Fracture Process in Blasting [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1971, 8: 181-202.
    [21] 张想柏,杨秀敏,陈肇元,等.接触爆炸钢筋混凝土板的震塌效应[J].清华大学学报:自然科学版,2006,46(6):765-768. ZHANG Xiang-bai, YANG Xiu-min, CHEN Zhao-yuan, et al. Explosion Spalling of Reinforced Concrete Slabs with Contact Detonations [J]. Journal of Tsinghua University: Natural Science, 2006, 46 (6): 765-768.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700