用户名: 密码: 验证码:
动力学粗糙度对高载荷低压涡轮气动性能影响的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Dynamic Roughness on Aerodynamic Performance of High-Lift LPT
  • 作者:黄进 ; 仲冬冬 ; 杨荣菲
  • 英文作者:HUANG Jin;ZHONG Dong-Dong;YANG Rong-Fei;Jiangsu Province Key Laboratory of Aerospace Power Systems, School of energy and power, Nanjing University of Aeronautics & Astronautics;
  • 关键词:主动控制 ; 静力学粗糙度 ; 动力学粗糙度 ; 动网格 ; 低压涡轮
  • 英文关键词:active flow control;;statics roughness;;dynamic roughness;;dynamic mesh;;low pressure turbine
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:江苏省航空动力系统重点实验室,南京航空航天大学能源与动力学院;
  • 出版日期:2019-04-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金资助项目(No.51406082)
  • 语种:中文;
  • 页:GCRB201904006
  • 页数:8
  • CN:04
  • ISSN:11-2091/O4
  • 分类号:39-46
摘要
动力学粗糙度是一种新型流动控制方法,通过分布式粗糙元高度沿壁面法向的非定常变化达到主动控制效果.本文基于高载荷低压涡轮叶栅T106D研究了静/动力学粗糙度对涡轮气动性能的影响,研究以FLUENT为计算工具,采用了动网格技术实现动力学粗糙度的数值模拟。首先开展了静力学粗糙度影响涡轮气动性能的研究,分析不同位置下的静力学粗糙度控制效果优异;在该研究结果基础上选取最优位置开展动力学粗糙度的数值模拟,结果表明,动力学粗糙度对气动性能的提升主要来自振动区域的压力/速度脉动产生的非定常涡与附面层相互作用。
        Dynamic roughness is a new active flow control method, which achieves the desired effect through unsteady transformation by distributed roughness elements height. The research is based on LPT blade named T106 D.FLUENT was used to perform the numerical simulation. Dynamic mesh method was adopted to realize numerical simulation of dynamic roughness. To analysis the effect of statics roughness under different location, research of statics roughness was conducted at first; then,select the optimal position to carry out the dynamic roughness numerical simulation on the basis of the former study. The result shows that the aerodynamic performance of ascension come mainly from the interaction between the unsteady vortex and boundary layer.
引文
[1] Vásquez R, Cadrecha D, Torre D. High Stage Loading Low Pressure Turbines:A New Proposal for an Efficiency Chart[R]. ASME Paper GT2003-38374, 2003
    [2] Howard Hodson, Om Sharma, Highly Loaded Low Pressure Turbine[R]. Aerothermodyn-amics Technical Working Group Technology Assessment White Paper, 2008
    [3] Howell R J, Ramesh O N, Hodson H P, et al. High Lift and Aft-Loaded Profiles for Low-Pressure Turbines[J]. Journal of Turbomachinery, 2001, 123(2):181-188
    [4] Lake J P, King P I, Rivir R B. Low Reynolds Number Loss Reduction on Turbine Blades With Dimples and Vgrooves[R]. AIAA Paper No.00-0738, 2000
    [5]杨林,乔渭阳,母忠强,等.基于表面“凹槽”与“陷窝”技术的低雷诺数涡轮流动损失控制[J].航空动力学报,2013,28(4):893-902YANG Lin, QIAO Wei-yang, MU Zhong-qiang, et al.Flow Loss Control of Turbine Based on “groove” and“dimple” Technology With Low Reynolds Number[J].Journal of Aerospace Power, 2013, 28(4):893-902
    [6] Volino R J. Passive Flow Control on Low-Pressure Turbine Airfoils[J]. Journal of Turbomachinery, 2003, 125(4):833-844
    [7] Zhang X F, Hodson H. The Combined Effects of Surface Trips and Unsteady Wakes on the Boundary Layer Development of an Ultra-High-Lift LP Turbine Blade[J].Journal of Turbomachinery, 2004, 127(3):1003-1013
    [8] Huebsch W. Dynamic Surface Roughness for Aerodynamic Flow Control[C]//42nd AIAA Aerospace Sciences Meeting and Exhibit. 2004:353-362
    [9] Gall P D. A Numerical and Experimental Study of the Effects of Dynamic Roughness on Laminar Leading Edge Separation[D]. West Virginia University, 2010
    [10] Grager T, Rothmayer A, Huebsch W, et al. Low Reynolds Number Airfoil Stall Suppression with Dynamic Roughness[C]//6th AIAA Flow Control Conference, 2012
    [11] Stadtmüller P, Fottner L, Stadtmüller P, et al. A Test Case for the Numerical Investigation of Wake Passing Effects on a Highly Loaded LP Turbine Cascade Blade[C]//ASME Turbo Expo 2001:Power for Land, Sea, and Air,2001:V001T03A015
    [12]蓝吉兵,谢永慧,张荻.低压高负荷燃气透平叶片边界层分离转捩数值模拟与流动控制[J].中国电机工程学报,2009,29(26):68-74LAN Jibing, XIE, Yonghui, ZHANG Di. Numerical Simulation and Control of Separated Transition Flows in high lift Low-pressure Gas Turbine Cascade[J]. Proceedings of the CSEE, 2009, 29(26):68-74
    [13] Vera M, Zhang X F, Hodson H, et al. Separation and Transition Control on an Aft-Loaded UltrarHigh-Lift LP Turbine Blade at Low Reynolds Numbers:High-Speed Validation[J]. Journal of Turbomachinery, 2007, 129(2):725-734
    [14] Simens M P, Gungor A G. The Effect of Surface Roughness on Laminar Separated Boundary Layers[J]. Journal of Turbomachinery, 2013, 136(3):V06CT42A040
    [15] Lake J. Reduction of Separation Losses on a Turbine Blade with Low Reynolds Numbers[C]//Aerospace Sciences Meeting and Exhibit, 1999
    [16] Mahallati A, Mcauliffe B R, Sjolander S A, et al. Aerodynamics of a Low-Pressure Turbine Airfoil at Low-Reynolds Numbers:Part 1—Steady Flow Measurements[C]//ASME Turbo Expo 2007:Power for Land, Sea, and Air.American Society of Mechanical Engineers, 2007:1011-1023
    [17] Roberts S K, Yaras M I. Effects of Surface-Roughness Geometry on Separation-Bubble Transition[J]. Journal of Turbomachinery, 2006, 128(2):1039-1047
    [18] Montomoli F, Hodson H, Haselbach F. Effect of Roughness and Unsteadiness on the Performance of a New Low Pressure Turbine Blade at Low Reynolds Numbers[J].Journal of Turbomachinery, 2010, 132(3):031018

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700