用户名: 密码: 验证码:
γ射线法测量高压管束间气液两相流的截面含气率分布
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Void fraction distribution of vapor-water two-phase flow in vertical tube bundles using gamma densitometer
  • 作者:程洁 ; 郭亚军 ; 王腾 ; 桂淼 ; 刘朝辉 ; 随志强
  • 英文作者:CHENG Jie;GUO Yajun;WANG Teng;GUI Miao;LIU Zhaohui;SUI Zhiqiang;School of Building Services Science and Engineering, Xi'an University of Architecture &Technology;State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University;
  • 关键词:高温高压 ; 垂直管束 ; 气液两相流 ; 截面含气率 ; γ射线
  • 英文关键词:high-temperature and high-pressure;;vertical tube bundle;;gas-liquid flow;;void fraction;;gamma ray
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:西安建筑科技大学建筑设备科学与工程学院;西安交通大学动力工程多相流国家重点实验室;
  • 出版日期:2019-01-09 17:21
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家重点研发计划项目(2018YFB0604403)
  • 语种:中文;
  • 页:HGSZ201904016
  • 页数:8
  • CN:04
  • ISSN:11-1946/TQ
  • 分类号:140-147
摘要
在立式蒸汽发生器垂直管束间的气液两相流中,截面含气率是其中一个重要参数。使用γ射线法对高温高压下垂直管束间气液两相流截面含气率的分布规律进行了实验研究。实验压力分别为5、7、9 MPa,质量流速为300 kg/(m~2·s),热力学干度的范围为0.003~0.4。实验得到了垂直管束间截面含气率随热力学干度、体积含气率和压力的变化关系;并与经典公式的计算结果对比发现,在低干度区域,实验结果与Miropolskii模型、Smith模型和Armand模型偏差较大,均大于30%,在高干度区域偏差较小;基于Armand理论,通过多元线性回归法拟合出本文工况下平均截面含气率的计算关联式,与日本核动力工程公司(NUPEC)的实验数据偏差小于15%。本研究对蒸汽发生器的结构设计和流动特性研究具有重要意义。
        In the vapor-water two-phase flow between vertical tube bundles of steam generators, void fraction is an important parameter. Gamma ray method was used to measure the void fraction distribution under high temperature and high pressure. The experimental pressures were 5, 7, 9 MPa, respectively,the mass flow was 300 kg/(m~2?s), and the thermodynamic vapor quality ranged from 0.003 to 0.4. The distribution of the void fraction in vertical tube bundles was obtained and the effects of thermodynamic vapor quality and volume fraction were investigated.Compared with the classical formula calculation model, in the low-dry zone, the relative error between Miropolskii model, Smith model and Armand model with the experimental data are more than 30%, in areas with high dryness,error is small. Based on Armand model, a practical correlation of average void fraction and volume fraction on the section was calculated by multiple linear regression. It can be concluded that the correlations agree well with Japan Nuclear Power Engineering Corporation(NUPEC) experimental data, the relative error is less than 15%. The results show that a gamma ray method can be used to measure and predict the distribution of the void fraction in vertical tube bundles under high-temperature and high-pressure effectively. In general, it is of great significance to the structural design and flow characteristics of steam generator.
引文
[1]吕俊复.气液两相流动与沸腾传热[M].北京:科学出版社,2017:457.Lyu J F. Gas-liquid Two-phase Flow and Boiling Heat Transfer[M]. Beijing:Science Press, 2017:457.
    [2]阎昌琪.气液两相流[M].哈尔滨:哈尔滨工程大学出版社,2007.Yan C Q. Gas-liquid Two-phase Flow[M]. Harbin:Harbin Engineering University Press, 2007.
    [3] Wang F, Jin N D, Wang D Y, et al. Measurement of gas phase characteristics in bubbly oil-gas-water flows using bi-optical fiber and high-resolution conductance probes[J]. Experimental Thermal and Fluid Science, 2017, 88:361-375.
    [4] Roshani N. A high performance gas-liquid two-phase flow meter based on gamma-ray attenuation and scattering[J]. Nuclear Science&Techniques, 2017, 28(11):169.
    [5]赵安,韩云峰,张宏鑫,等.气液两相流段塞流持气率快关阀法优化设计[J].化工学报, 2016, 67(4):1159-1168.Zhao A, Han Y F, Zhang H X, et al. Optimal design for measuring gas holdup in gas-liquid two-phase slug flow using quick closing valve method[J]. CIESC Journal, 2016, 67(4):1159-1168.
    [6] Sardeshppande M V, Harinarayan S, Ranade V V. Void fraction measurement using electrical capacitance tomography and high speed photography[J]. Chemical Engineering Research and Design, 2015, 94:1-11.
    [7] Dragomirescu A, Pincovschi I, Miu M. Assessment of global void fraction in a gas-liquid stirred vessel by digital image processing[J]. Energy Procedia, 2017, 112:217-224.
    [8] Jia J, Babatunde A, Wang M. Void fraction measurement of gasliquid two-phase flow from differential pressure[J]. Flow Measurement&Instrumentation, 2015, 41:75-80.
    [9]唐人虎,陈听宽,罗毓珊,等.高温高压下用光纤探针测量截面含汽率的实验研究[J].化工学报, 2001, 52(6):560-563.Tang R H, Chen T K, Luo Y S, et al. Void fraction measurement by using optical probes at high temperature and high pressure[J].Journal of Chemical Industry and Engineering(China), 2001, 52(6):560-563.
    [10] Nazemi E, Fefhhi S A H. Precise void fraction measurement in two-phase flows independent of the flow regime using gamma-ray attenuation[J]. Nuclear Engineering&Technology, 2016, 48(1):64-71.
    [11] Zhao Y, Bi Q C, Hu R C. Recognition and measurement in the flow pattern and void fraction of gas-liquid two-phase flow in vertical upward pipes using the gamma densitometer[J]. Applied Thermal Engineering, 2013, 60(1/2):398-410.
    [12] Zhao Y, Bi Q C, Bi Y J, et al. Void fraction measurement in steam-water two-phase flow using the gamma ray attenuation under high pressure and high temperature evaporating conditions[J]. Flow Measurement and Instrumentation, 2016, 49:18-30.
    [13]吕海财,毕勤成,赵于,等.伽马射线法测量亚临界汽-水两相流截面含气率[C]//中国工程热物理学会. 2015.Lyu H C, Bi Q C, Zhao Y, et al. Measurement of void fraction in subcritical steam water two-phase flow by gamma ray method[C]//Chinese Society of Engineering Thermophysics. 2015.
    [14] Pan Y Z, Ma Y G, Huang S F, et al. A new model for volume fraction measurements of horizontal high-pressure wet gas flow using gamma-based techniques[J]. Experimental Thermal and Fluid Science, 2018, 96:311-320.
    [15]徐国平,王启杰.气液两相流沿垂直向下横掠水平管束时的流型及其转变特性[J].化工学报, 1993, 44(2):250-253.Xu G P, Wang Q J. Gas-liquid two-phase flow patterns and their transition characteristics in vertical up and downflow across a horizontal tube bundle[J]. Journal of Chemical Industry and Engineering(China), 1993, 44(2):250-253.
    [16]陈斌,傅宇晨,郭烈锦,等.水平管束间气液两相流局部含气率分布的实验研究[J].化工学报, 2003, 54(3):316-320.Chen B, Fu Y C, Guo L J, et al. Experimental investigation of distribution of void fraction between horizontal tube bundle[J].Journal of Chemical Industry and Engineering(China), 2003, 54(3):316-320.
    [17]洪文鹏,王宣宇,陈柄君.气液两相流绕管束流动压降特性实验研究[J].东北电力大学学报, 2012, 32(6):67-71.Hong W P, Wang X Y, Chen B J. Experimental investigation of gas-liquid two-phase pressure drop across tube bundle[J].Journal of Northeast Dianli University, 2012, 32(6):67-71.
    [18] Clark C, Griffiths M, Chen S W, et al. Experimental study of void fraction in an 8×8 rod bundle at low pressure and low liquid flow conditions[J]. International Journal of Multiphase Flow, 2014, 62:87-100.
    [19] Kanizawa F T, Ribatski G. Two-phase flow patterns across triangular tube bundles for air-water upward flow[J]. International Journal of Multiphase Flow, 2016, 80(80):43-56.
    [20] Ozaki T, Suzuki R, Hibiki T, et al. Development of drift-flux model based on 8*8 BWR rod bundle geometry experiments under prototypic temperature and pressure conditions[J]. Nucl. Sci.Technol., 2013, 50:563-580.
    [21] Ozaki T, Hibiki T. Drift-flux model for rod bundle geometry[J].Prog. Nucl. Energy, 2015, 83:229-247.
    [22] Hibiki T, Mao K, Ozaki T. Development of void fraction-quality correlation for two-phase flow in horizontal and vertical tube bundles[J]. Progress in Nuclear Energy, 2017, 97:38-52.
    [23] Smith S L. Void fraction in two-phase flow:a correlation based upon an equal velocity heat model[J]. Proc. Instn. Mech. Engrs.,1968, 184:647-664.
    [24]朱晓静,毕勤成.垂直上升内螺纹管中高压汽-水两相流截面含汽率的测量[J].西安交通大学学报, 2015, 49(3):50-55.Zhu X J, Bi Q C. Measurement of void fraction of high pressure steam water two-phase flow in vertical upward ribbed tube[J].Journal of Xian Jiaotong University, 2015, 49(3):50-55.
    [25] Hooker H H, Popper G F. A gamma-ray attenuation method for void fraction determinations in experimental boiling heat transfer test facilities[R]. Argonne National Laboratory, 1958.
    [26] Coleman H W, Steele W G. Engineering application of experimental uncertainty analysis[J]. AIAA Journal, 2015, 33(33):1888-1896.
    [27] Corre J M L, Bergmann U C, Hallehn A, et al. Measurements of local two-phase flow parameters in fuel bundle under BWR operating conditions[J]. Nuclear Engineering&Design, 2017, 336(2018):15-23.
    [28] Graham B W. One-dimensional Two-phase Flow[M]. New York:McGraw-Hill, 1969.
    [29] Armand A A. The resistance during the movement of a two-phase system in horizontal pipes[J]. Izv Vses Teploteck Inst, 1946, 828(1):16-23.
    [30]胡日查,刘春龙,毕勤成,等.γ射线法测量亚临界汽-水两相流截面含气率的实验研究[J].热能动力工程, 2015, 30(6):842-847.Hu R C, Liu C L, Bi Q C, et al. Experimental study of theγ-ray method for measuring the gas content in a cross section with a subcritical steam-water two-phase flow[J]. Journal of Engineering for Thermal Energy&Power, 2015, 30(6):842-847.
    [31] Miropolakii Z L, Snelobe P E, Kalamesebe A E. Void fraction of water-steam mixture flow with or without heat transfer[J]. Journal of Nuclear Science&Technology, 1971, 5(19):374-379.
    [32]黄承德.锅炉水动力学及锅炉内传热[M].北京:机械工业出版社, 1982.Huang C D. Boiler Hydrodynamics and Internal Heat Transfer[M].Beijing:China Machine Press, 1982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700