用户名: 密码: 验证码:
核壳结构CdS/CuS纳米复合材料的制备及光催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and Photocatalytic Performance of CdS/CuS Core-shell Nanocomposites
  • 作者:张克杰 ; 李宇 ; 夏源 ; 韩烁 ; 曹静 ; 王瀚漾 ; 罗文韬 ; 周志萍
  • 英文作者:ZHANG Kejie;LI Yu;XIA Yuan;HAN Shuo;CAO Jing;WANG Hanyang;LUO Wentao;ZHOU Zhiping;School of Materials Science and Engineering,Nanjing Institute of Technology;Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology;School of Chemistry and Chemical Engineering,Nanjing University;
  • 关键词:硫化镉/硫化铜 ; 纳米复合材料 ; 光催化 ; 降解效率
  • 英文关键词:CdS/CuS;;Nanocomposite;;Photocatalysis;;Degradation efficiency
  • 中文刊名:GDXH
  • 英文刊名:Chemical Journal of Chinese Universities
  • 机构:南京工程学院材料科学与工程学院;江苏省先进结构材料与应用技术重点实验室;南京大学化学化工学院;
  • 出版日期:2019-03-10
  • 出版单位:高等学校化学学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(批准号:21603101);; 南京工程学院创新基金(批准号:CKJA201303,TB201802035,TB201802038)资助~~
  • 语种:中文;
  • 页:GDXH201903012
  • 页数:9
  • CN:03
  • ISSN:22-1131/O6
  • 分类号:79-87
摘要
以乙酸镉、2-巯基苯并噻唑、硫化钠和氯化铜为原料,依次利用液相热分解与离子吸附法,改变CdS晶化时间及含量,制备了4种CdS/CuS纳米复合材料.研究结果表明:CdS/CuS纳米复合材料呈类球形核壳结构,改变CdS晶化时间可以控制CdS/CuS纳米复合材料粒径大小; CdS的晶化时间为10 min,CdS与CuS摩尔比为4∶1的纳米复合材料光催化活性最佳,25 min内对Rh B和MB的降解效率均达到99%.
        Four CdS/CuS core-shell nanocomposite samples with different molar ratios of CdS to CuS were synthesized via liquid-phase thermal decomposition and ion adsorption method under different crystallization time of CdS,using cadmium acetate,2-mercaptobenzothiazole,sodium sulfide and cupric chloride as the raw materials. The experimental results indicated that the samples were spherical nucleus-like structures and their particle size was controllable with the crystallization time of CdS. The degradation efficiencies of rhodamine B( RhB) and methylene blue( MB) both reached about 99% when the molar ratio of CdS to CuS was 4 ∶ 1 and the crystallization time of CdS was 10 min. The method of ion adsorption makes CuS fully coat on the surface of CdS,forming effective core-shell structure and obviously improving the photocatalytic performance of CdS.
引文
[1] Chen H. M.,Chen C. K.,Liu R. S.,Zhang L.,Zhang J.,Wilkinson D. P.,Chem. Soc. Rev.,2012,41(17),5654—5671
    [2] Ramasamy K.,Sims H.,Butler W. H.,Gupta A.,J. Am. Chem. Soc.,2014,136(4),1587—1598
    [3] Liu B. W.,Zeng H. Y.,Zhang M. J.,Fan Y. H.,Guo G. C.,Huang J. S.,Dong Z. C.,Inorg. Chem.,2015,54(3),976—981
    [4] Luo M.,Liu Y.,Hu J.,Liu H.,Li J.,ACS Appl. Mater. Interfaces,2012,4(3),1813—1821
    [5] Han J. H.,Kwak M.,Kim Y.,Cheon J.,Chem. Rev.,2018,118(13),6151—6188
    [6] Deng X.,Wang C.,Yang H.,Shao M.,Zhang S.,Wang X.,Ding M.,Huang J.,Xu X.,Sci. Rep.-UK,2017,7(1),3877—3888
    [7] Yang J.,Wang J.,Li X.,Wang D.,Song H.,Catal. Sci. Technol.,2016,6(12),4525—4534
    [8] Sarkar A.,Ghosh A. B.,Saha N.,Srivastava D. N.,Paul P.,Adhikary B.,J. Colloid Interface Sci.,2016,483,49—59
    [9] Wang L.,Wen M.,Wang W.,Momuinou N.,Wang Z.,Li S.,J. Alloy Compd.,2016,683,318—328
    [10] Wu G.,Xiao L.,Gu W.,Shi W.,Jiang D.,Liu C.,RSC Adv.,2016,6(24),19878—19886
    [11] Han H.,Kim K. M.,Choi H.,Ali G.,Chung K. Y.,Hong Y.-R.,Choi J.,Kwon J.,Lee S. W.,Lee J. W.,Ryu J. H.,Song T.,MhinS.,ACS Catal.,2018,8(5),4091—4102
    [12] Song J.,Zhao H.,Sun R.,Li X.,Sun D.,Energ. Environ. Sci.,2017,10(1),225—235
    [13] Zhou S.,Yin L.,J. Alloy Compd.,2017,691,1040—1048
    [14] Habisreutinger S. N.,Schmidt-Mende L.,Stolarczyk J. K.,Angew. Chem. Int. Ed. Engl.,2013,52(29),7372—7408
    [15] Liu X.,Inagaki S.,Gong J.,Angew. Chem. Int. Ed. Engl.,2016,55(48),14924—14950
    [16] Nakajima T.,Tamaki Y.,Ueno K.,Kato E.,Nishikawa T.,Ohkubo K.,Yamazaki Y.,Morimoto T.,Ishitani O.,J. Am. Chem. Soc.,2016,138(42),13818—13821
    [17] Bu Y.,Chen Z.,Li W.,Yu J.,ACS Appl. Mater. Interfaces,2013,5(11),5097—5104
    [18] Bao N.,Shen L.,Takata T.,Domen K.,Gupta A.,Yanagisawa K.,Grimes C. A.,J. Phys. Chem. C,2007,111(47),17527—17534
    [19] Khan U. A.,Liu J.,Pan J.,Ma H.,Zuo S.,Yu Y.,Ahmad A.,Li B.,Mat. Sci. Semicond. Process.,2018,83,201—210
    [20] Lin L.,Luo Y.,Tsai P.,Wang J.,Chen X.,Tr AC-Trends Anal. Chem.,2018,103,87—101
    [21] Rashid J.,Saleem S.,Awan S. U.,Iqbal A.,Kumar R.,Barakat M. A.,Arshad M.,Zaheer M.,Rafique M.,Awad M.,RSC Adv.,2018,8(22),11935—11945
    [22] Bella M.,Rivero C.,Blayac S.,Basti H.,Record M. C.,Boulet P.,Mater. Res. Bull.,2017,90,188—194
    [23] Cheng L.,Xiang Q.,Liao Y.,Zhang H.,Energy Environ. Sci.,2018,11(6),1362—1391
    [24] Murillo Leo I.,Soto E.,Vaquero F.,Mota N.,Navarro R. M.,Fierro J. L. G.,Int. J. Hydrogen Energy,2017,42(19),13691—13703
    [25] Gao S.,Zhang J.,Li Y.,Jiao S.,Yuan J.,Wang G.,Li X.,Wang J.,Yu Q.,Zhang X.,Eur. J. Inorg. Chem.,2018,2018(18),1916—1920
    [26] Giri A.,Park G.,Yang H.,Pal M.,Kwak J.,Jeong U.,Adv. Mater.,2018,30(25),1707577—1707595
    [27] Xu X.,Hu L.,Gao N.,Liu S.,Wageh S.,Al-Ghamdi A. A.,Alshahrie A.,Fang X.,Adv. Funct. Mater.,2015,25(3),445—454
    [28] Hernández-Guzmán F.,Nicho-Díaz M. E.,Medrano-Solís A.,Altuzar-Coello P.,Eur. Polym. J.,2017,90,407—417
    [29] And N. H. T.,Lamb R. N.,J. Phys. Chem. B,2002,106(2),352—355
    [30] Pezeshkpour S.,Salamatinia B.,Amini H. B.,Ceram. Int.,2018,44(3),3201—3210
    [31] Fang X.,Jiao L.,Zhang R.,Jiang H. L.,ACS Appl. Mater. Interfaces,2017,9(28),23852—23858
    [32] Deng Y.,Zhang Y.,Peng L.,Jing X.,Chen H.,Adv. Mater. Sci. Eng.,2016,2016,1—10
    [33] Zhang K.,Liu X.,Appl. Surf. Sci.,2011,257(24),10379—10383
    [34] Ma T.,Zhou F.,Zhang T. W.,Yao H. B.,Su T. Y.,Yu Z. L.,Li Y.,Lu L. L.,Yu S. H.,Angew. Chem. Int. Ed. Engl.,2017,56(39),11836—11840
    [35] Azqhandi M. H. A.,Vasheghani F B.,Rajabi F. H.,Keramati M.,Results Phys.,2017,7,1106—1114
    [36] Li C.,Wang H.,Naghadeh S. B.,Zhang J. Z.,Fang P.,Appl. Catal. B:Environ.,2018,227,229—239
    [37] Xu X.,Hu L.,Gao N.,Liu S.,Wageh S.,Al-Ghamdi A. A.,Alshahrie A.,Fang X.,Adv. Funct. Mater.,2014,25(3),445—454
    [38] Banerji S.,Byrne R. E.,Livingstone S. E.,Transition Met. Chem.,1982,7(1),5—10
    [39] Guo M.,Wu Q.,Yu M.,Wang Y.,Li M.,Electrochim. Acta,2017,236,280—287
    [40] Li R.,Yu L.,Yan X.,Tang Q.,RSC Adv.,2015,5(16),11917—11924
    [41] Zhou J.,Tian G.,Chen Y.,Shi Y.,Tian C.,Pan K.,Fu H.,Sci. Rep.-UK,2014,4(2955),4027—4034
    [42] Reddy C. V.,Shim J.,Cho M.,J. Phys. Chem. Solids,2017,103,209—217
    [43] González-Moya J. R.,Garcia-Basabe Y.,Rocco M. L.,Pereira M. B.,Princival J. L.,Almeida L. C.,Araújo C. M.,David D. G.,DaS. A.,Machado G.,Nanotechnology,2016,27(28),285401—285414
    [44] Tong X. L.,Jiang D. S.,Liu Z. M.,Luo M. Z.,Li Y.,Lu P. X.,Yang G.,Long H.,Thin Solid Films,2008,516(8),2003—2008
    [45] Rondiya S.,Rokade A.,Funde A.,Kartha M.,Pathan H.,Jadkar S.,Thin Solid Films,2017,631,41—49
    [46] Qian J.,Zhao Z.,Shen Z.,Zhang G.,Peng Z.,Fu X.,J. Mater. Res.,2015,30(24),3746—3756
    [47] Ye M.,Wen X.,Zhang N.,Guo W.,Liu X. Y.,Lin C.,J. Mater. Chem. A,2015,3(18),9595—9600
    [48] Cheng F.,Yin H.,Xiang Q.,Appl. Surf. Sci.,2017,391,432—439
    [49] Vamvasakis I.,Trapali A.,Miao J.,Liu B.,Armatas G. S.,Inorg. Chem. Front.,2016,4(3),433—441
    [50] Zou S.,Fu Z. H.,Zeng M.,Zhou J. B.,Journal of Natural Science of Hunan Normal University,2016,39(5),57—60(邹帅,伏再辉,曾明,周建波.湖南师范大学自然科学学报,2016,39(5),57—60)
    [51] Xin Y.,Chen Q.,Zhang G.,J. Alloy. Compd.,2018,751,231—240
    [52] Wang Y.,Yang X.,Ye T.,Xu C.,Xia F.,Meng D.,J. Electron. Mater.,2016,46(3),1598—1606
    [53] Li Q.,Wang F.,Sun L.,Jiang Z.,Ye T.,Chen M.,Bai Q.,Wang C.,Han X.,Nano-Micro Lett.,2017,9(3),131—139
    [54] Gao X. M.,Dai Y.,Fei J.,Zhang Y.,Fu F.,Chem. J. Chinese Universities,2017,38(7),1249—1256(高晓明,代源,费娇,张裕,付峰.高等学校化学学报,2017,38(7),1249—1256)
    [55] Li X.,Xia T.,Xu C.,Murowchick J.,Chen X.,Catal. Today,2014,225,64—73
    [56] Chen X.,Li H.,Wu Y.,Wu H.,Wu L.,Tan P.,Pan J.,Xiong X.,J. Colloid Interface Sci.,2016,476,132—143
    [57] Pelaez M.,Falaras P.,Likodimos V.,O’Shea K.,de la Cruz A. A.,Dunlop P. S. M.,Byrne J. A.,Dionysiou D. D.,J. Mol. Catal. A:Chem.,2016,425,183—189
    [58] Zou C.,Meng Z.,Ji W.,Liu S.,Shen Z.,Zhang Y.,Jiang N.,Chinese J. Catal.,2018,39(6),1051—1059

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700