用户名: 密码: 验证码:
高量子效率InP/In_(0.53)Ga_(0.47)As/InP红外光电阴极模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of InP/In_(0.53)Ga_(0.47)As/InP infrared photocathode with high quantum yield
  • 作者:周振辉 ; 徐向晏 ; 刘虎林 ; 李岩 ; 卢裕 ; 钱森 ; 韦永林 ; 何凯 ; 赛小锋 ; 田进寿 ; 陈萍
  • 英文作者:Zhou Zhenhui;Xu Xiangyan;Liu Hulin;Li Yan;Lu Yu;Qian Sen;Wei Yonglin;He Kai;Sai Xiaofeng;Tian Jinshou;Chen Ping;Xi′an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences;University of Chinese Academy of Sciences;Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology of Chinese Academy of Sciences;Shool of Science, Xi′an Shiyou University;Institute of High Energy Physics, Chinese Academy of Sciences;State Key Laboratory of Particle Detection and Electronics;
  • 关键词:量子效率 ; 响应时间 ; 指数掺杂 ; 红外光电阴极 ; InP/In0.53Ga0.47As/InP
  • 英文关键词:quantum yield;;response time;;exponential doping;;infrared photocathode;;InP/In0.53Ga0.47As/InP
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:中国科学院西安光学精密机械研究所;中国科学院大学;中国科学院超快诊断重点实验室;西安石油大学理学院;中国科学院高能物理研究所;核探测与核电子学国家重点实验室;
  • 出版日期:2018-10-31 16:56
  • 出版单位:红外与激光工程
  • 年:2019
  • 期:v.48;No.292
  • 基金:国家自然科学基金(11475209)
  • 语种:中文;
  • 页:HWYJ201902034
  • 页数:7
  • CN:02
  • ISSN:12-1261/TN
  • 分类号:247-253
摘要
将In_(0.53)Ga_(0.47)As吸收层设计为多个薄层,通过不同浓度掺杂实现吸收层杂质指数分布,建立了InP/In_(0.53)Ga_(0.47)As/InP红外光电阴极模型,在皮秒级响应时间的前提下模拟了吸收层厚度、掺杂浓度和阴极外置偏压对阴极内量子效率的影响,给出了光电子在吸收层和发射层的一维连续性方程和边界条件,计算了光电子克服激活层势垒发射到真空中的几率,进而获得阴极外量子效率随上述三个因素的变化规律,结果表明,吸收层掺杂浓度在10~(15)~10~(18)cm~(-3)范围内变化时,内量子效率变化很小;随着吸收层厚度在0.09~0.81μm内增大,内量子效率随之增大;随着外置偏压升高,内量子效率先增大后趋于平稳。文中给出一组既能获得高量子效率又能有快时间响应的阴极设计参数,理论上1.55μm入射光可以获得8.4%的外量子效率,此时响应时间为49 ps。
        An InP/In_(0.53)Ga_(0.47)As/InP infrared photocathode model was established. The In_(0.53)Ga_(0.47)As absorber layer was designed as a multi-layer structure, the impurities of it were exponentially distributed by doping with different concentrations of the thin layers. The one-dimensional continuity equations and boundary conditions of the photoelectron in the absorber layer and the emissive layer were given and the probability that photoelectrons overcome the launch of the active layer barrier into the vacuum was calculated. The effects of absorber layer thickness, doping concentration and cathode bias voltage on the internal quantum efficiency of the cathode was simulated under the condition of picosecond response time, and then the law of the external quantum yield of the cathode was obtained with the above three factors. The results show that, when the doping concentration of the absorber layer changes within the range of 10~(15)-10~(18)cm~(-3), The internal quantum efficiency change is very small; as the thickness of the absorber layer increases within 0.09-0.81 μm, the internal quantum efficiency increases. As the external bias voltage increases, the internal quantum efficiency increases first and then tends to be stable. A set of cathode design parameters that could achieve both high quantum efficiency and fast time response were presented. Theoretically, an external quantum yield of 8.4% can be obtained for 1.55 μm incident light, and the response time is 49 ps.
引文
[1]Yang M Z,Jin M C,Chang B K.Spectral response of InGaAs photocathodes with different emission layers[J].Applied Optics,2016,55(31):8732-8737.
    [2]Jin M C,Chen X L,Hao G H,et al.Research on quantum efficiency for reflection-mode InGaAs photocathodes with thin emission layer[J].Applied Optics,2015,54(28):8332-8338.
    [3]Matsuyama T,Mukai M,Horinaka H,et al.High luminescence polarization of InGaAs-AlGaAs strained layer superlattice fabricated as a photocathode of spin-polarized electron source[J].Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes&Review Papers,2001,40(11):6468-6472.
    [4]Yang M Z,Jin M C.Photoemission of reflection-mode InGaAs photocathodes after Cs,O activation and recaesiations[J].Optical Materials,2016,62:499-504.
    [5]Smirnov K,Medzakovskiy V I,Davydov V V,et al.High sensitive InP emitter for InP/InGaAs heterostructures[J].Journal of Physics:Conference Series,2017,917(6):062019.
    [6]Sachno V,Dolgyh A,Loctionov V.Image intensifier tube(I2)with 1.06-μm InGaAs-photocathode[C]//SPIE,2005,5834:169-176.
    [7]Escher J S,Gregory P E,Hyder S B,et al.Transferredelectron photoemission to 1.65μm from InGaAs[J].Journal of Applied Physics,1978,49(4):2591-2592.
    [8]Li Jinmin,Guo Lihui,Hou Xun.Theoretical calculation of quantum efficiency for field-assisted InP/InGaAsPsemiconductor photocathodes[J].Acta Physica Sinica,1992,41(10):1672-1678.(in Chinese)
    [9]Jin M C,Chang B K,Cheng H C,et al.Research on quantum efficiency of transmission-mode InGaAs photocathode[J].Optik,2014,125(10):2395-2399.
    [10]Li Jinmin,Guo Lihui,Hou Xun.Calculation of time response for field-assisted InP/InGaAsP/InP semiconductor photocathodes[J].Chinese Science Bulletin,1992,37(7):598-601.(in Chinese)
    [11]Sun Qiaoxia,Xu Xiangyan,An Yingbo,et al.Numerical study on time response characteristics of InP/InGaAs/InPinfrared photocathode[J].Infrared and Laser Engineering,2013,42(12):3163-3167.(in Chinese)
    [12]Zou Jijun,Chang Benkang,Yang Zhi.Theoretical calculation of quantum yield for exponential-doping Ga As photocathodes[J].Acta Physica Sinica,2007,56(5):2992-2997.
    [13]Escher J S,Gregory P E,Maloney T J.Hot-electron attenuation length in Ag/InP Schottky barriers[J].Journal of Vacuum Science and Technology,1979,16(5):1394-1397.
    [14]Su C Y,Spicer W E,Lindau I.Photoelectron spectroscopic determination of the structure of(Cs,O)activated GaAs(110)surfaces[J].Journal of Applied Physics,1983,54(3):1413-1422.
    [15]Levinshtein M,Rumyantsev S,Shur M.Handbook Series on Semiconductor Parameters[M].2nd ed.London:World Scientific,1999:62-88.
    [16]Simon S M.Physics of Semiconductor Devices[M].New York:Wiley,1980.
    [17]Levinshtein M,Rumyantsev S,Shur M.Handbook Series on Semiconductor Parameters[M].1st ed.London:World Scientific,1999.
    [18]Jiao Gangcheng,Xu Xiaobing,Zhang Liandong,et al.InGaAs/InP photocathode grown by solid-source MBE[C]//SPIE,2013,8912:891216.
    [19]Chinen Kouyu,Minoru Niigaki,Masahiro Miyao,et al.Ga As transmission photocathode grown by MBE[J].Japanese Journal of Applied Physics,1980,19(11):703-706.
    [20]Narayanan A A,Fisher D G.Negative electron affinity gallium arsenide photocathode grown by MBE[J].Appl Phys,1984,56(6):1886-1887.
    [21]Bourree L E,Chasse D R,Thamban P L,et al.MBE grown InGaAs photocathodes[C]//SPIE,2003,4796:1-10.
    [22]Jin M C,Chang B K,Guo J,et al.Theoretical study on electronic and optical properties of Zn-doped In0.25Ga0.75As photocathodes[J].Optical Review,2016,23(1):84-91.
    [23]Guo Jing,Chang Benkang,Wang Honggang,et al.Nearinfrared photocathode In0.53Ga0.47As doped with zinc:A first principle study[J].Optik,2016,127(3):1268-1271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700