用户名: 密码: 验证码:
薄膜微结构的近红外透射诱导增强特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of Near-infrared Induced Transmission Enhancement of Thin Film Micro-structures
  • 作者:葛少博 ; 刘卫国 ; 周顺 ; 杨鹏飞 ; 李世杰 ; 黄岳田 ; 孙雪平 ; 林大斌 ; 张进
  • 英文作者:GE Shao-bo;LIU Wei-guo;ZHOU Shun;YANG Peng-fei;LI Shi-jie;HUANG Yue-tian;SUN Xue-ping;LIN Da-bin;ZHANG Jin;Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test,School of Photoelectric Engineering,Xi′an Technological University;Institute of Optics and Electronics,Chinese Academy of Sciences;
  • 关键词:薄膜微结构 ; 单点金刚石切削 ; 纳米压印 ; 减反射 ; 透射增强
  • 英文关键词:Thin film microstructure;;Single point diamond turning;;Nano-imprint lithography;;Anti-reflection;;Transmission enhancement
  • 中文刊名:GZXB
  • 英文刊名:Acta Photonica Sinica
  • 机构:西安工业大学光电学院陕西省薄膜技术与光学检测重点实验室;中国科学院光电技术研究所;
  • 出版日期:2019-07-15 09:28
  • 出版单位:光子学报
  • 年:2019
  • 期:v.48
  • 基金:国家基础研究项目(No.JCKY2016208A002);; 先进制造项目(No.41423020111);; 陕西省高校科协青年人才托举计划项目(No.20160122);; 西安工业大学院长基金(No.15GDYJY03)~~
  • 语种:中文;
  • 页:GZXB201907021
  • 页数:11
  • CN:07
  • ISSN:61-1235/O4
  • 分类号:196-206
摘要
在SiNx薄膜中引入微金字塔结构,综合利用包含界面的薄膜光学微结构的折射、衍射与干涉现象,实现透反射的调控.通过单点金刚石切削与纳米压印、等离子体各向异性刻蚀技术相结合,将大面积、高效率、低成本的微结构制备方法推广至光学薄膜中,实现了多种尺寸的金字塔薄膜微结构的制备,结构单元尺寸可以在1.5~10μm之间进行调控.光谱特性检测结果表明,SiNx薄膜微金字塔结构阵列在近红外至长波红外波段,表现出超宽波段的减反射特性;在0.8~2.5μm的近红外波段,反射率低于1.0%;在3~5μm的中红外波段,反射率小于2.5%;在10~12μm长波红外波段,平均反射率低于5%;与传统的四分之一波长抗反射膜系相比,SiNx薄膜微金字塔结构阵列的减反射效果的实现,无需膜系设计时的折射率匹配,简化了膜系结构.研究发现SiNx薄膜微金字塔结构阵列的近红外透射诱导增强特性,高度为2~4μm的SiNx薄膜微金字塔结构阵列,均在2.1μm波长处出现明显的透射诱导增强效应,且高为4μm,底宽为8μm的微金字塔结构阵列的透射增强作用最为明显,透射率达到了96%以上.实验检测与仿真分析证明,透射增强的位置和强度由微结构的形貌尺寸及其结构比例关系决定.
        The micropyramid structures was integrated into the silicon nitride thin film.The refraction,diffraction and interference of the thin film optical microstructures which contains interface were comprehensively utilized to realize the regulation of transmission and reflection.The preparation of micropyramid array in SiNxfilm by single-point diamond turning technology combined with nano-imprint and inductively coupled plasma etching was presented. The large-area, high-efficiency, low-cost microstructure preparation method was applied to generate thin film optical microstructures.The thin film optical micropyramid structures with different sizes were fabricated.The structural unit size could be adjusted between 1.5μm and 10μm.Spectral characteristics test results proved the ultra-wide band anti-reflection of the SiNxthin film optical micropyramid array during near-infrared to long wave infrared region.In the near-infrared band of 0.8~2.5μm,the reflectivity is less than 1.0%.In the mid-infrared band of 3~5μm,the reflectivity is less than 2.5%.In the long-wavelength infrared band of 10~12μm,the average reflectance is less than 5%.Compared to antireflection film,the anti-reflective effect of SiNx thin film micro-pyramid structure array can be achieved without the refractive index matching in the design of the films,which simplifies the structure of the films.It is also found that the SiNxthin film micro-pyramid structure array has induced transmission enhancement characteristics at near-infrared.The SiNxthin film micro-pyramid array with a height of 2μm to 4μm have obvious transmission-induced enhancement effects at the wavelength of 2.1μm,and the micro-pyramid structure array with a height of4μm and a bottom width of 8μm has the most obvious transmission enhancement effect,and the transmittance reaches 96% at least.The position and intensity of transmission enhancement are determined by the morphology,size and structure proportion of the micro-structure based on experimental test and simulation analysis.
引文
[1]JOANNOPOULOS J D,JOHNSON S G,WINN J N,et al.Photonic crystals:molding the flow of light[M].Princeton:Princeton University,2011.
    [2]ALESSIO M,ANDREA A,ALESSANDRO T,et al.Metasurface-based anti-reflection coatings at optical frequencies[J].Journal of Optics,2018,20(5):055001.
    [3]ZHANG Jing,LIN Zhao-wen,FU Xiu-hua,et al.Preparation of ultraviolet-C to near-infrared braodband anti-reflective coating[J].Acta Photonica Sinica,2018,47(10):1031003.张静,林兆文,付秀华,等.超短紫外到近红外宽波段增透膜的研制[J].光子学报,2018,47(10):1031003.
    [4]LI Tong,ZHOU Yan-wen,WANG Yan-xue,et al.Properties of ZnO/Ag/ZnO transparent conducting thin films prepared by magnetron sputtering[J].Chinese Journal of Luminescence.2018,39(9):1272-1279.李彤,周艳文,王艳雪,等.磁控溅射制备本征ZnO/Ag/ZnO透明导电薄膜的性质研究[J].发光学报,2018,39(9):1272-1279.
    [5]ZHANG B,HENDRICKSON J,NADER N,et al.Metasurface optical antireflection coating[J].Applied Physics Letters,2014,105(24):241113.
    [6]MATTHAIAKAKIS N,MIZUTA H,CHARLTON M D B.Strong modulation of plasmons in graphene with the use of an inverted pyramid array diffraction grating[J].Scientific Reports,2016,6:27550.
    [7]TYBOROSKI M H,ANDERSON N R,CAMLEY R E.An effective medium study of surface plasmon polaritons in nanostructured gratings using attenuated total reflection[J].Journal of Applied Physics,2014,115(1):124314-124342.
    [8]YANG T C,HUANG T Y,LEE H C,et al.Applying silicon nanoholes with excellent antireflection for enhancing photovoltaic performance[J].Journal of the Electrochemical Society,2011,159(2):B104-B108.
    [9]SRIVASTAVA S K,KUMAR D,SINGH P K,et al.Excellent antireflection properties of vertical silicon nanowire arrays[J].Solar Energy Materials&Solar Cells,2010,94(9):1506-1511.
    [10]MAVROKEFALOS A,SANG E H,YERCI S,et al.Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications[J].Nano Letters,2012,12(6):2792.
    [11]ALSHAL M A,ALLAM N K.Broadband absorption enhancement in thin film solar cells using asymmetric doublesided pyramid gratings[J].Journal of Electronic Materials,2016,45(11):1-10.
    [12]PAIVANRANTA B,SAASTAMOINEN T,KUITTINEN M.A wide-angle antireflection surface for the visible spectrum[J].Nanotechnology,2009,20(37):7.
    [13]EYDERMAN S,JOHN S,HAFEZ M,et al.Light-trapping optimization in wet-etched silicon photonic crystal solar cells[J].Journal of Applied Physics,2015,118(2):023103.
    [14]CHEN Z H,QIAO N,WANG Y,et al.Efficient broadband energy absorption based on inverted-pyramid photonic crystal surface and two-dimensional randomly patterned metallic reflector[J].Applied Energy,2016,172:59-65.
    [15]SIVASUBRAMANIAM S,ALKAISI M M.Inverted nanopyramid texturing for silicon solar cells using interference lithography[J].Microelectronic Engineering,2014,119:146-150.
    [16]JIANG W,LIU H,YIN L,et al.Enhanced photoelectric properties in dye-sensitized solar cells using TiO2pyramid arrays[J].Journal of Physical Chemistry C,2016,120(18):9678-9684.
    [17]MAHBOUB O,PALACIOS S C,GENET C,et al.Optimization of bull's eye structures for transmission enhancement[J].Optics Express,2010,18(11):11292.
    [18]HE X,O'KEEFE N,LIU Y,et al.Transmission enhancement in coaxial hole array based plasmonic colour filter for image sensor applications[J].IEEE Photonics Journal,2018,10(4):1-9.
    [19]LE D,LEE J M,KIM S J,et al.Burr analysis in microgrooving[J].International Journal of Advanced Manufacturing Technology,2010,50(5-8):569-577.
    [20]DONGXU W,GUO L,BO W,et al.Fabrication of microstructured surfaces by five-axis ultra precision machine tool[J].Key Engineering Materials,2015,625:187-191.
    [21]CHOU S Y,KRAUSS P R,RENSTROM P J.Imprint lithography with 25-nanometer resolution[J].Science,1996,272(5258):85-87.
    [22]GE S,LIU W,ZHOU S,et al.Design and preparation of a micro-pyramid structured thin film for broadband infrared antireflection[J].Coatings,2018,8(5):192.
    [23]周顺.电阻阵列红外景物产生器微桥结构的材料及制作研究[D].西安:西安电子科技大学,2011.
    [24]NAGATO K.Injection compression molding of replica molds for nanoimprint lithography[J].Polymers,2014,6(3):604.
    [25]雷建国.基于超材料结构的电磁波吸收特性研究[D].长春:长春理工大学,2017.
    [26]KISCHKAT J,PETERS S,GRUSKA B,et al.Mid-infrared optical properties of thin films of aluminum oxide,titanium dioxide,silicon dioxide,aluminum nitride,and silicon nitride[J].Applied Optics,2012,51(28):6789-6798.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700