用户名: 密码: 验证码:
库布齐东段不同植被恢复阶段荒漠生态系统碳氮储量及分配格局
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carbon and nitrogen storage and distribution patterns of desert ecosystems at different vegetation restoration stages in the eastern Hobq Desert
  • 作者:王博 ; 段玉玺 ; 王伟峰 ; 李晓晶 ; 刘宗奇
  • 英文作者:WANG Bo;DUAN Yuxi;WANG Weifeng;LI Xiaojing;LIU Zongqi;Inner Mongolia Forestry Research Institute;
  • 关键词:荒漠生态系统 ; 生物量 ; 碳氮储量 ; 分配格局 ; 植被恢复
  • 英文关键词:desert ecosystem;;biomass;;C and N storage;;distribution pattern;;vegetation restoration
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:内蒙古自治区林业科学研究院;
  • 出版日期:2019-01-10 09:10
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家林业公益性行业科研专项(201404204);; 内蒙古自治区2016应对气候变化及低碳发展财政专项资金项目(2740046);; 林业科技创新平台项目(2017-LYPT-DW-009)
  • 语种:中文;
  • 页:STXB201907021
  • 页数:11
  • CN:07
  • ISSN:11-2031/Q
  • 分类号:208-218
摘要
为科学评价植被恢复促进沙漠化逆转对碳氮储量的影响,以流动沙地、半固定沙地、油蒿固定沙地、柠条固定沙地、沙柳固定沙地5个阶段荒漠生态系统为研究对象,采用时空替代法分析植被恢复过程中荒漠生态系统碳氮储量及分配格局。结果表明:不同恢复阶段碳氮储量均表现为:流动沙地(3320.97 kg C/hm~2、346.69 kg N/hm~2)<半固定沙地(4371.46 kg C/hm~2、435.95 kg N/hm~2)<油蒿固定沙地(6096.50 kg C/hm~2、513.76 kg N/hm~2)<柠条固定沙地(9556.80 kg C/hm~2、926.31 kg N/hm~2)<沙柳固定沙地(19488.54 kg C/hm~2、982.11 kg N/hm~2)。植被层碳氮储量均呈现随植被恢复逐渐增加的趋势,除流动沙地外,其他阶段碳氮储量均以灌木层为主,占比分别为66.65%—91.41%和52.94%—93.39%,草本和凋落物占比较小。灌木各器官生物量及碳储量分配均为:茎>根>叶,氮储量分配无明显规律,草本各器官生物量及碳氮储量分配均为地上部分高于地下部分。土壤层是荒漠生态系统碳氮储量的主体,碳储量占比为68.64%—99.62%,氮储量占比为89.26%—99.89%,同样呈现随植被恢复逐渐增加的趋势。碳氮储量随土层加深逐渐降低,具有明显的表层富集特征,且随植被恢复过程富集性显著加强。这说明人工建植促进植被演替实现沙漠化逆转可以显著增强荒漠生态系统的碳氮固存能力。
        Storage of carbon(C) and nitrogen(N) in ecosystems is the result of long-term accumulation in vegetation and the soil stratum. In this study, a spatial series analysis was performed, that represented a temporal series to accurately estimate the total C and N reserves of the eastern Hobq Desert ecosystems. Fixed sand was selected for the standard plots to identify the C and N storage and distribution patterns at different restoration stages and in various vegetation and plant organs. The aim of the study was to clarify the effects of vegetation restoration and the reversion process of desertification on the C and N storage in a mobile dune, semi-fixed sand, Artemisia ordosica fixed sand, Caragana korshinskii fixed sand, and in Salix cheilophila. The results revealed that the change trends for the total C and N storage in the desert ecosystems at different restoration stages were the same: mobile dune(3320.97 kg C/hm~2 and 346.69 kg N/hm~2) < semi-fixed sand(4371.46 kg C/hm~2 and 435.95 kg N/hm~2) < Artemisia ordosica fixed sand(6096.50 kg C/hm~2 and 513.76 kg N/hm~2) < Caragana korshinskii fixed sand(9556.80 kg C/hm~2 and 926.31 kg N/hm~2) < Salix cheilophila fixed sand(19488.54 kg C/hm~2 and 982.11 kg N/hm~2). Except for the mobile dune, the plant C and N stores at the other sites were mainly distributed in the shrub layer. At these sites, the C and N reserve in shrubs accounted for 66.65%—91.41% and 52.94%—93.39% of the plant layer, respectively. However, the C and N reserve of the herbaceous plants and litter only accounted for a small proportion of the plant layer. Additionally, different organs in the plants had different C and N storage characteristics; the biomass and C reserve of the shrubs both showed the following, stem > root > leaf. The distribution of N storage in the different organs of the shrubs was not significant. The above-ground biomass and the C and N storage of the herbaceous pants were greater than the underground biomass. Like other ecosystems, the main components of a desert ecosystem are the C and N storage in the soil layer, which accounted for 68.64%—99.62% and 89.26%—99.89% of the desert ecosystem, respectively. When the sand was gradually fixed and vegetation cover rate increased, the C and N storage in the soil layer increased. Different soil depths had different C and N storage characteristics; the C and N storage of the shallow soil was greater than that of the deep soil. This revealed an obvious enrichment phenomenon in the surface soil. Additionally, with the reversion of the process of desertification, the enrichment became more and more remarkable. In conclusion, with the succession of vegetation and soil development, the reversion of desertification could promote the absorption and fixation of C and N in desert ecosystems.
引文
[1] 冯进,袁伟影,高俊琴,安菁,张晓雅.青藏高原海北高寒湿地和草甸生态系统碳库对比.生态学杂志,2016,35(9):2293- 2298.
    [2] 于贵瑞,王秋凤,刘迎春,刘颖慧.区域尺度陆地生态系统固碳速率和增汇潜力概念框架及其定量认证科学基础.地理科学进展,2011,30(7):771- 787.
    [3] Zhang C,Lu D S,Chen X,Zhang Y M,Maisupova B,Tao Y.The spatiotemporal patterns of vegetation coverage and biomass of the temperate deserts in Central Asia and their relationships with climate controls.Remote Sensing of Environment,2016,175:271- 281.
    [4] Li C P,Xiao C W.Above- and belowground biomass of Artemisia ordosica communities in three contrasting habitats of the Mu Us desert,Northern China.Journal of Arid Environments,2007,70(2):195- 207.
    [5] Batjes N H.Total carbon and nitrogen in the soils of the world.European Journal of Soil Science,2014,65(1):10- 21.
    [6] 刘顺,罗达,刘千里,张利,杨洪国,史作民.川西亚高山不同森林生态系统碳氮储量及其分配格局.生态学报,2017,37(4):1074- 1083.
    [7] 李玉强,赵哈林,移小勇,左小安,陈银萍.沙漠化过程中科尔沁沙地植物-土壤系统碳氮储量动态.环境科学,2006,27(4):635- 640.
    [8] 姚斌,王锋,冯益明.中国土地荒漠化对土壤碳的影响研究综述.西南林业大学学报,2014,34(3):100- 106.
    [9] Xu H,Li Y,Xu G Q,Zou T.Ecophysiological response and morphological adjustment of two central Asian desert shrubs towards variation in summer precipitation.Plant Cell & Environment,2007,30(4):399- 409.
    [10] Fan J W,Wang K,Harris W,Zhong H P,Hu Z M,Han B,Zhang W Y,Wang J B.Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia.Journal of Arid Environments,2009,73(4/5):521- 528.
    [11] 苏永中,赵哈林,张铜会,李玉霖.科尔沁沙地不同年代小叶锦鸡儿人工林植物群落特征及其土壤特性.植物生态学报,2004,28(1):93- 100.
    [12] 赵平.退化生态系统植被恢复的生理生态学研究进展.应用生态学报,2003,14(11):2031- 2036.
    [13] 李向婷,白洁,李光录,罗格平,古丽·加帕尔,李均力.新疆荒漠稀疏植被覆盖度信息遥感提取方法比较.干旱区地理,2013,36(3):502- 511.
    [14] 钱洲,俞元春,俞小鹏,高捍东,吕荣,张文英.毛乌素沙地飞播造林植被恢复特征及土壤性质变化.中南林业科技大学学报,2014,34(4):102- 107.
    [15] 王继和,马全林,杨自辉,刘虎俊,詹科杰.干旱区沙漠化土地逆转植被的时空格局及其机制研究.中国沙漠,2004,24(6):729- 733.
    [16] 郭帅,赵宏霞.恢复生态学领域的植被演替研究综述.聊城大学学报:自然科学版,2011,24(3):59- 63.
    [17] 郝璐,王静爱,张化.北方草地畜牧业生态系统健康综合评价与诊断.生态学报,2008,28(4):1456- 1465.
    [18] Havstad K M,Huenneke L F,Schlesinger W H.Structure and Function of a Chihuahuan Desert Ecosystem:The Jornada Basin Long-Term Ecological Research Site.Oxford and New York:Oxford University Press,2006:1- 24.
    [19] Búrquez A,Martínez-Yrízar A,Núňez S,Quintero T,Aparicio A.Aboveground biomass in three Sonoran Desert communities:variability within and among sites using replicated plot harvesting.Journal of Arid Environments,2010,74(10):1240- 1247.
    [20] Houghton R A,Hall F,Goetz S J.Importance of biomass in the global carbon cycle.Journal of Geophysical Research,2009,114(G2):G00E03.
    [21] Lioubimtseva E,Cole R,Adams J M,Kapustin G.Impacts of climate and land-cover changes in arid lands of Central Asia.Journal of Arid Environments,2005,62(2):285- 308.
    [22] 徐丽恒,王继和,李毅,马全林,张德魁,刘有军,陈芳.腾格里沙漠南缘沙漠化逆转过程中的土壤物理性质变化特征.中国沙漠,2008,28(4):690- 695.
    [23] 董志玲.干旱荒漠区人工梭梭林土壤碳氮储量分布规律及影响因子研究[D].北京:中国林业科学研究院,2014.
    [24] 杨梅焕,朱志梅,曹明明,王春杰,谢艳.毛乌素沙地东南缘不同沙漠化阶段土壤-植被关系研究.西北农林科技大学学报:自然科学版,2010,38(5):181- 187,192- 192.
    [25] 曹成有,朱丽辉,蒋德明,富徭,高菲菲.科尔沁沙地不同人工植物群落对土壤养分和生物活性的影响.水土保持学报,2007,21(1):168- 171.
    [26] Feng Q,Endo K N,Cheng G D.Soil carbon in desertified land in relation to site characteristics.Geoderma,2002,106(1/2):21- 43.
    [27] 蒋德明,曹成有,李雪华,周全来,李明.科尔沁沙地植被恢复及其对土壤的改良效应.生态环境,2008,17(3):1135- 1139.
    [28] 齐雁冰,常庆瑞,刘梦云,刘京,陈涛.荒漠化土壤对人工植被恢复工程的响应.干旱地区农业研究,2011,29(3):180- 185.
    [29] 李尝君,曾凡江,郭京衡,热甫开提,刘波.植被恢复程度与沙地土壤性质——以塔克拉玛干沙漠南缘为例.干旱区研究,2015,32(6):1061- 1067.
    [30] Cao C Y,Jiang D M,Teng X H,Jiang Y,Liang W J,Cui Z B.Soil chemical and microbiological properties along a chronosequence of Caragana microphylla Lam.plantations in the Horqin sandy land of northeast China.Applied Soil Ecology,2008,40(1):78- 85.
    [31] Veldkamp E.Soil Organic Carbon Dynamics in Pastures Established After Deforestation in the Humid Tropics of Costa Rica[D].Wageningen:Agricultural University,1993.
    [32] Jobbágy E G,Jackson R B.The vertical distribution of soil organic carbon and its relation to climate and vegetation.Ecological Applications,2000,10(2):423- 436.
    [33] 左小安,赵学勇,赵哈林,云建英,王少昆,苏娜,冯静.沙地退化植被恢复过程中植被的空间异质性.生态环境学报,2010,19(7):1513- 1518.
    [34] 周欣,左小安,赵学勇,王少昆,罗永清,岳祥飞,张腊梅.半干旱沙地生境变化对植物地上生物量及其碳、氮储量的影响.草业学报,2014,23(6):36- 44.
    [35] 赵哈林,李玉强,周瑞莲.沙漠化对科尔沁沙质草地生态系统碳氮储量的影响.应用生态学报,2007,18(11):2412- 2417.
    [36] Jackson L L,Lopoukhine D,Hillyard D.Ecological restoration:a definition and comments.Restoration Ecology,1985,3(2):71- 75.
    [37] 赵哈林,苏永中,周瑞莲.我国北方沙区退化植被的恢复机理.中国沙漠,2006,26(3):323- 328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700