用户名: 密码: 验证码:
一款基于多物理场调控的超宽带线-圆极化转换器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An ultrawideband linear-to-circular polarization converter based on multiphysics regulation
  • 作者:曾立 ; 刘国标 ; 章海锋 ; 黄通
  • 英文作者:Zeng Li;Liu Guo-Biao;Zhang Hai-Feng;Huang Tong;College of Electronic and Optical Engineering and College of Microelectronics, Nanjing University of Posts and Telecommunications;National Electronic Science and Technology Experimental Teaching Demonstrating Center, Nanjing University of Posts and Telecommunications;National Information and Electronic Technology Virtual Simulation Experiment Teaching Center, Nanjing University of Posts and Telecommunications;State Key Laboratory of Millimeter Waves of Southeast University;
  • 关键词:线-圆极化转换器 ; 超宽带 ; 多物理场 ; 可调谐特性
  • 英文关键词:linear-to-circular polarization converter;;ultra-broadband;;multiphysics;;tunability
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:南京邮电大学电子与光学工程学院微电子学院;南京邮电大学电子科学与技术国家级实验教学示范中心;南京邮电大学信息电子技术国家级虚拟仿真实验教学中心;东南大学毫米波国家重点实验室;
  • 出版日期:2019-02-28 15:40
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:东南大学毫米波国家重点实验室开放课题(批准号:K201927);; 校级大学生创新训练计划资助的课题~~
  • 语种:中文;
  • 页:WLXB201905010
  • 页数:8
  • CN:05
  • ISSN:11-1958/O4
  • 分类号:88-95
摘要
为了在微波波段实现可调谐的线-圆极化转换器的设计,结合固态等离子体与二氧化钒设计了一种基于多物理场调控的超宽带线-圆极化转换器,通过改变固态等离子体谐振单元激励状态和人为改变外部温度(T)来实现对该线-圆极化转换器工作频段的调控.采用了全波仿真的方法对该极化转换器的极化转换率曲线、反射相位曲线、轴比曲线、表面电流图进行了计算,并讨论了参数r_1与r_3对轴比的影响.仿真结果表明,当固态等离子体区域均未激励且T<68℃时,3 dB轴比频带为14.3—29.7 GHz,相对带宽为70%;当固态等离子体区域均被激励且T<68℃时,3 dB轴比频带为14.4—23.4 GHz与28.6—35.9 GHz,相对带宽分别为47.61%和22.64%;当固态等离子体区域未激励且T≥68℃时,3 dB轴比频带为8.4—11.2 GHz与18.7—29.5 GHz,相对带宽分别为28.57%与44.81%.通过改变固态等离子体的激励状态和外部温度,实现了该超宽带线-圆极化转换器工作带宽向高频和低频区域的移动.
        In order to design a tunable linear-to-circular polarization converter in microwave band, an ultrabroadband linear-to-circular polarization converter(LCPC) based on multiphysics regulation is proposed and studied by combining solid state plasma and vanadium dioxide(VO2) in this article. By using the electric control way to control the states of the solid plasma resonator, the solid state plasma can generate excitation and non-excitation state. By using the temperature(T) control way to regulate the phase transition state of the VO2 resonator, the VO2 can generate insulating and metallic state. The purpose of dynamic shift of the proposed LCPC′s operating band can be realized. The polarization conversion rate curve, reflection phase curve,the axial ratio curve and the surface current diagram of the proposed LCPC are analyzed and simulated by the full-wave simulation software HFSS and the effects of parameters r_1 and r_3 on the axial ratio are also discussed.When none of all the solid plasma regions are excited and T < 68 ℃, the presented LCPC is in No. 1 state. On the basis of No. 1 state, if all the solid state plasma are excited, the presented LCPC is in No. 2 state.Similarly, on the basis of No. 1 state, the presented LCPC will be transformed to No. 3 state when T ≥ 68 ℃.The axial ratio band which is less than 3 dB(3 dB AR band) is 14.3-29.7 GHz(the relative bandwidth is 70%)in No. 2 state. The 3 dB AR bands which are 14.4-23.4 GHz and 28.6-35.9 GHz(the relative bandwidths are47.61% and 22.64%) show that the proposed LCPC has the ability to shift the working band to high frequency range. When switching the LCPC to No. 3 state, the 3 dB AR bands which are 8.4-11.2 GHz and 18.7-29.5 GHz(the relative bandwidths are 28.57% and 44.81%) are shifted to low frequency region. Compared with traditional LCPC, our design has the advantages of diverse control means, wide bandwidth, flexible design and strong functionality. At the same time, this LCPC presents a new design method and idea for multiphysical field regulated devices.
引文
[1]Ling F,Zhong Z,Huang R,Zhang B 2018 Sci.Rep.8 9843
    [2]Yan B,Zhong K,Ma H,Li Y,Sui C,Wang J,Shi Y 2017Opt.Commun.383 57
    [3]Yang H 2015 M.S.Thesis(Nanjing:Nanjing University of Aeronautics and Astronautics)(in Chinese)[杨化2015硕士学位论文(南京:南京航空航天大学)]
    [4]Cheng Y Z,Withayachumnankul W,Upadhyay A,Headland D,Nie Y,Gong R Z,Bhaskaran M,Sriram S,Abbott D 2014Appl.Phys.Lett.105 181111
    [5]Su H,Lan F,Yang Z,Zhang Y,Shi Z,Li M,Shi M,Luo F,Liang Z 2016 Antennas,Propagation and EM Theory(ISAPE),2016 11th International Symposium on.IEEEGuilin,China,October 18-21,2016 p206
    [6]Ma H F,Wang G Z,Kong G S,Cui T J 2014 Opt.Mater.Express 4 1717
    [7]Zhai Y C,Wu Q,Tan J J,Tao H,Gao F H,Zhu J H,Zhang Z Y,Du J L,Hou Y D 2015 Microelectron.Eng.145 49
    [8]Zhang H F,Zhang H,Yao Y,Yang J,Liu J X 2018 IEEEPhotonics J.10 1
    [9]Yu Z Y,Liu S B,Xue F,Li H M 2015 2015 National Conference on Microwave and Millimeter Wave Hefei,May30-June 2,2015 p522(in Chinese)[余志洋,刘少斌,薛峰,李海明2015 2015年全国微波毫米波会议,合肥市,2015年5月30日-6月2日,第522页]
    [10]Kong X K,Mo J J,Yu Z Y,Shi W,Li H M,Bian B R 2016Int.J.Mod Phys.B 30 1650070
    [11]Song Z,Wang K,Li J,Liu Q H 2018 Opt.Express 26 7148
    [12]Zylbersztejn A,Mott N F 1975 Phys.Rev.B 11 4383
    [13]Ha S D,Zhou Y,Fisher C J,Ramanathan S,Treadway J P2013 J.Appl.Phys.113 184501
    [14]Huang W X,Yin X G,Huang C P,Wang Q J,Miao T F,Zhu Y Y 2010 Appl.Phys.Lett.96 261908
    [15]Liu Z M,Li Y,Zhang J,Huang Y Q,Li Z P,Pei J H,Fang BY,Wang X H,Xiao H 2017 IEEE Photonic.Tech.L.29 1967
    [16]Madan H,Zhang H T,Jerry M,Mukherjee D,Alem N,Engel-Herbert R,Datta S 2015 Electron Devices Meeting(IEDM),2015 IEEE International Washington DC,USA,December 7-9,2015 p9
    [17]Vitale W A,Paone A,Fernandez-Bolanos M,Bazigos A,Grabinski W,Schuler A,Ionescu A M 2014 Proceedings of the 72nd Annual Device Research Conference(No.EPFL-CONF-200324),Santa Barbara,California,USA,June 22-252014 p1528
    [18]Kats M A,Blanchard R,Genevet P,Yang Z,Qazilbash M M,Basov D N,Ramanathan S,Capasso F 2013 Opt.Lett.38 368
    [19]Cai H,Chen S,Zou C,Huang Q,Liu Y,Hu X,Fu Z,Zhao Y,He H,Lu Y 2018 Adv.Opt.Mater.6 1800257
    [20]Yu Z Y 2016 M.S.Thesis(Nanjing:Nanjing University of Aeronautics and Astronautics)(in Chinese)[余志洋2016硕士学位论文(南京:南京航空航天大学)]
    [21]Yang J,Zhang H F,Zhang H,Liu J X 2018 Laser&Optoelectronics Prog.55 091602(in Chinese)[杨靖,章海锋,张浩,刘佳轩2018激光与光电子学进展55 091602]
    [22]Zhao Y,Huang Q P,Cai H L,Lin X X,Lu Y L 2018 Opt.Commun.426 443
    [23]Wen Q Y,Zhang H W,Yang Q H,Chen Z,Long Y,Jing YL,Lin Y,Zhang P X 2012 J.Phys.D:Appl.Phys.45 235106
    [24]Li W,Chang S J,Wang X H,Lin L,Bai J J 2014Optoelectronics Lett.10 180
    [25]Shi W 2017 M.S.Thesis(Nanjing:Nanjing University of Aeronautics and Astronautics)(in Chinese)[施维2017硕士学位论文(南京:南京航空航天大学)]
    [26]Yu C H,Cao X Y,Gao J,Han J F,Zhou Y L 2018 J.Air Force Eng.Univ.(Nat.Sci.Ed.)19 60(in Chinese)[于惠存,曹祥玉,高军,韩江枫,周禹龙2018空军工程大学学报(自然科学版)19 60]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700