用户名: 密码: 验证码:
湖南晚稻洪涝过程等级指标构建与演变特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Process Grade Indicator Construction and Evolution Characteristics of Late Rice Flood in Hunan
  • 作者:汪天颖 ; 霍治国 ; 杨建莹 ; 李旭辉 ; 吴立 ; 张桂香
  • 英文作者:Wang Tianying;Huo Zhiguo;Yang Jianying;Li Xuhui;Wu Li;Zhang Guixiang;Chinese Academy of Meteorological Sciences;Key Laboratry of Hunan Province for Meteorological Disaster Prevention and Mitigation;Collaborative Innovation Center of Meteorological Disaster Forecast,Early-Warning and Assessment,Nanjing University of Information Science & Technology;Yale-NUIST Center on Atmospheric Environment,Nanjing University of Information Science & Technology;
  • 关键词:晚稻 ; 洪涝 ; 生育期 ; 灾害等级指标 ; 时空分布
  • 英文关键词:late rice;;flood;;growth stage;;disaster grade indicators;;temporal-spatial distribution
  • 中文刊名:YYQX
  • 英文刊名:Journal of Applied Meteorological Science
  • 机构:中国气象科学研究院;气象防灾减灾湖南省重点实验室;南京信息工程大学气象灾害预报预警与评估协同创新中心;南京信息工程大学耶鲁-南京信息工程大学大气环境中心;
  • 出版日期:2019-01-15
  • 出版单位:应用气象学报
  • 年:2019
  • 期:v.30
  • 基金:中国气象科学研究院科技发展基金(2018KJ012);; “十三五”国家科技支撑计划(2016YFD0300101-05);; “十二五”国家科技支撑计划(2012BAD20B02)
  • 语种:中文;
  • 页:YYQX201901004
  • 页数:14
  • CN:01
  • ISSN:11-2690/P
  • 分类号:37-50
摘要
以湖南晚稻为研究对象,基于1961—2010年双季晚稻种植区68个气象站的降水资料、17个农业气象观测站的生育期观测资料,采用历史灾情反演方法,构建晚稻大田生长期3个生育时段、3个洪涝等级的洪涝灾害样本125个,应用Q-Q图拟合、W检验和t分布区间估计方法,计算晚稻分生育期(移栽-分蘖期、拔节-孕穗期、抽穗-成熟期)不同洪涝致灾等级(轻、中、重)的过程降水量临界值,构建晚稻洪涝过程等级指标,并进行独立样本验证检验;应用M-K检验等方法分析1961-2010年湖南晚稻洪涝的时空演变特征。结果表明:指标验证与历史记录有较高一致性;同一洪涝等级的指标阈值从大到小依次为抽穗-成熟期、拔节-孕穗期、移栽-分蘖期;20世纪60年代和90年代是湖南晚稻洪涝发生最严重的年代,总洪涝次数在1994年发生突变;晚稻轻涝在抽穗-成熟期发生率最高,中涝和重涝在拔节-孕穗期发生率最高;总洪涝的高发地区位于郴州、岳阳地区;随年代推移,晚稻各等级洪涝和总洪涝高发区均呈现由北向南的变化。
        Focusing on the late rice in Hunan, daily precipitation data during 1961 —2010 from 68 meteorological stations and phenophase data from 17 agrometeorological observation stations in Hunan are analyzed, and 125 late rice flood process precipitation samples are recognized, including disasters of 3 growth stages(transplanting-tillering,jointing-booting, blooming-maturity) and 3 flood grades(light, moderate, severe). Quantile-quantile plot, Shapiro-Wilk test and Student's t-distribution are employed for the suitability test and critical value calculation of flood process precipitation samples from each flood disaster sample sets. And then, late rice flood disaster grade indicators during different growth periods are determined by critical values and verified by independent samples. Temporal-spatial evolution characteristics of late rice flood disaster in Hunan are analyzed based on the constructed flood level indicators, M-K test and ArcGIS.Results show that, there is high consistency between indicator verification result and history record, indicating the constructed flood level indicators can reflect the actual late rice flood disaster situation. Thresholds of the same flood grade in different growth periods are different, ascending from transplanting-tillering stage, jointing-booting stage to blooming-maturity stage. Main occurrence years of Hunan late rice flood are 1961, 1969, 1980, 1987, 1988, 1994 and 1997. Late rice flood disaster is most serious in the 1960s and the 1990s, and the total flood frequency mutated in 1994 and declined afterwards. The total flood frequency of late rice is highest in transplanting-tillering stage, followed by jointing-booting stage,and blooming-maturity stage is the lowest. Light flood has the highest incidence rate during blooming-maturity period, while moderate and severe flood both has the highest incidence rate during jointing-booting period. The total flood frequency during transplanting-tillering and blooming-maturity periods decrease after the year of 2000, but are still similar to the 1990 s during jointing-booting stage. The flood-prone areas are located in Chenzhou and Yueyang, severe floods mainly located in mountain area in Loudi and Chenzhou, and areas with relatively less flood are mainly located in central and southern Hunan(the Hengshao Basin). The occurrence of late rice flood disaster gradually decreases from the 1960s to the 1980s, then increases in the 1990s, and decreases in the 2000s. The flood-prone area of each grade and total all moves from the north to the south in Hunan these years.
引文
[1]王雪臣,冷春香,冯相昭,等.长江中游地区洪涝灾害风险分析.科技导报,2008,26(2):61-66.
    [2]卞洁,李双林,何金海.长江中下游地区洪涝灾害风险性评估.应用气象学报,2011,22(5):604-611.
    [3]李维京,张若楠,孙丞虎,等.中国南方旱涝年际年代际变化及成因研究进展.应用气象学报,2016,27(5):577-591.
    [4]吴贤云,丁一汇,王琪,等.近40年长江中游地区旱涝特点分析.应用气象学报,2006,17(1):19-28.
    [5]李阳生,李绍清.湖南农业的洪涝灾害问题及对策.农业现代化研究,1998,19(2):39-42.
    [6]王淑彬,林青,黄国勤.轮作对稻米品质的影响.中国农学通报,2011,27(33):137-141.
    [7]胡晋豪,徐庆国,黄琳.不同类型水稻品种米质的差异研究.作物研究,2014,28(5):461-466.
    [8] Ricard B,Rivoal J,Spiteri A,et al. Anaerobic stress induce the transcription and translation of sucrose synthase in rice. Plant Physiol,1991,95(37):669-674.
    [9]吕晓敏,周广胜.双季稻主要气象灾害研究进展.应用气象学报,2018,29(4):385-395.
    [10]潘立峰,谢瑞生,倪初才.洪涝灾害对晚稻生长发育的影响.浙江农业科学,1991(3):117-119.
    [11]霍治国,范雨娴,杨建莹,等.中国农业洪涝灾害研究进展.应用气象学报,2017,28(6):641-653.
    [12] IIattori Y,Nagai K, Ashikari M. Rice growth adapting to deepwater. Current Opinion in Plant Biology,2011,14(1):100-105.
    [13]彭月,蒋元华,兰明才,等.秋季连阴雨天气对湖南农业生产的影响及防灾减灾措施.湖南农业科学,2016(5):51-53;57.
    [14]郭建平.农业气象灾害监测预测技术研究进展.应用气象学报,2016,27(5):620-630.
    [15]徐鹏,顾晓鹤,邱贺,等.基于多时相IIJ影像的水稻洪涝灾情和产量监测.灾害学,2014,29(2):188-192.
    [16]邓爱娟,刘敏,万素琴,等.湖北省双季稻生长季降水及洪涝变化特征.长江流域资源与环境,2012,21(增刊Ⅰ):173-178.
    [17]黄珍珠,王华,陈新光,等.气候变化背景下“龙舟水”特征及其对广东早稻产量的影响.生态环境学报,2011,20(5):793-797.
    [18]段海来,王春林,唐力生,等.华南地区晚稻洪涝灾害风险评估.生态学杂志,2014,33(5):1368-1373.
    [19]陆魁东,帅细强,刘富来,等.湖南气候与作物气象.长沙:湖南科学技术出版社,2015.
    [20]曾庆华,黎祖贤,向德龙,等.中国气象灾害大典(湖南卷).北京:气象出版社,2006.
    [21]董文杰,张强,郭进修,等.中国气象灾害年鉴(2005).北京:气象出版社,2006.
    [22]董文杰,高歌,王有民,等.中国气象灾害年鉴(2006).北京:气象出版社,2007.
    [23]董文杰,何勇,陈峪,等.中国气象灾害年鉴(2007).北京:气象出版社,2007.
    [24]吴骞.洪涝灾害对水稻发育期及产量结构影响的评估分析.上海农业科技,2013(1):30-34.
    [25]李永和,石亚月,陈耀岳.试论洪涝对水稻的影响.自然灾害学报,2004(6):83-87.
    [26]何宜宝,毕笃彦.基于广义拉普拉斯分布的图像压缩感知重构.中南大学学报(自然科学版),2013,44(8):3196-3202.
    [27]章溢,周东琼,温利民.柏拉图-伽玛模型下TVaR风险度量的贝叶斯估计.工程数学学报,2015,32(5):667-676.
    [28] Daly A,Donaldson P,Bhatnagar P,et al. IILA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nature Genetics,2009,41(7):816.
    [29] Zou J,Lippert C,IIeckerman D,et al. Epigenome-wide association studies without the need for cell-type composition. Nature Methods,2014,11(3):309.
    [30]宗序平,姚玉兰.利用Q-Q图与P-P图快速检验数据的统计分布.统计与决策,2010(20):151-152.
    [31]梁小筠.正态性检验.北京:中国统计出版社,1997.
    [32]胡靖杰.t分布函数及其应用.统计与管理,2017(4):46-47.
    [33]杨宏毅,霍治国,杨建莹,等.江汉和江南西部春玉米涝渍指标及风险评估.应用气象学报,2017,28(2):237-246.
    [34]魏凤英.现代气候统计诊断与预测技术.北京:气象出版社,2007.
    [35]赵翠光,李泽椿.华北夏季降水异常的客观分区及时间变化特征.应用气象学报,2012,23(6):641-649.
    [36]白淑英,顾海敏,史建桥,等.近50 a长江流域暴雨日数时空变化分析.长江流域资源与环境,2015,24(7):1255-1262.
    [37]宁金花,霍治国,黄晚华,等.抽穗扬花期淹涝胁迫对杂交稻的影响.中国农学通报,2014,30(9):71-76.
    [38]孙系巍,宁金花,张艳桂,等.乳熟期淹涝胁迫对水稻形态特性及产量的影响.湖南农业科学,2015(6):27-30.
    [39] Allen R,Pereira L,Raes D,et al. Crop evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage. FAO,Paper 56,1998,D05109.
    [40]朱崇基,朱远骥,应盛木.水稻孕穗期到始穗期淹水对产量及经济性状的影响.浙江农业科学,1989(4)151-154.
    [41]帅细强.利用GIS技术评价湖南夏秋干旱状况//中国气象学会.推进气象科技创新加快气象事业发展:中国气象学会2004年年会论文集(下册).北京:中国气象学会,2004.
    [42]黄晚华,杨晓光,李茂松,等.基于标准化降水指数的中国南方季节性干旱近58 a演变特征.农业工程学报,2010,26(7):50-5 9.
    [43]李敏敏.长江流域旱涝灾害的统计灾害学研究.西安:陕西师范大学,2014.
    [44]汪天颖,霍治国,李旭辉,等.基于生育时段的湖南省早稻洪涝等级指标及时空变化特征.生态学杂志,2016,35(3):709-718.
    [45]梅伟,杨修群.我国长江中下游地区降水变化趋势分析.南京大学学报(自然科学版),2005(6):577-589.
    [46]卞洁,何金海,李双林.近50年来长江中下游汛期暴雨变化特征.气候与环境研究,2012,17(1):68-80.
    [47]王冀,江志红,严明良,等.1960—2005年长江中下游极端降水指数变化特征分析.气象科学,2008,28(4):384-388.
    [48]帅细强,陆魁东,邹锦明,等.湖南晚稻缺水率的年代际变化.湖南农业科学,2009(5):70-73.
    [49]石艳,李天江,毛显后.基于5a区域站的贵州致灾强降雨特征分析.贵州气象,2016,40(2):49-51;64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700