用户名: 密码: 验证码:
茂兰喀斯特森林自然保护区凋落叶分解动态
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Decomposition Dynamics of Leaf Litters in Maolan Karst Forest Natrue Reserve
  • 作者:窦百强 ; 容丽 ; 俞国松 ; 李恒
  • 英文作者:Dou Baiqiang;Rong Li;Yu Guosong;Li Heng;College of Geography and Environmental Sciences, Guizhou Normal University;State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry, Chinese Academy of Sciences;
  • 关键词:茂兰喀斯特森林自然保护区 ; 凋落叶 ; 分解速率 ; 养分释放
  • 英文关键词:Maolan Karst Forest Natrue Reserve;;leaf litter;;decomposition rate;;nutrient release
  • 中文刊名:STTB
  • 英文刊名:Bulletin of Soil and Water Conservation
  • 机构:贵州师范大学地理与环境科学学院;中国科学院地球化学研究所环境地球化学国家重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:水土保持通报
  • 年:2019
  • 期:v.39;No.229
  • 基金:贵州省社会发展科技攻关计划项目“喀斯特区抗冻耐旱型植物增值增汇技术与示范”(黔科合SY字[2012]3011号);; 贵州省国内一流学科建设项目“贵州师范大学地理学”(黔教科研发[2017]85号);; 贵州省自然科学基金项目(黔科合J字[2008]2063号)
  • 语种:中文;
  • 页:STTB201902015
  • 页数:7
  • CN:02
  • ISSN:61-1094/X
  • 分类号:100-106
摘要
[目的]研究喀斯特森林生态系统凋落叶分解特征,为喀斯特森林区石漠化防治及水土保持提供科学依据。[方法]采用1 mm网孔孔径分解袋,对茂兰喀斯特森林自然保护区不同树种凋落叶(落叶和常绿叶)在不同坡位的分解状况进行为期18个月的观测研究。研究茂兰喀斯特森林自然保护区凋落叶失重率和干重残留率动态变化、分解速率及养分释放特征。[结果]凋落叶分解过程呈现"快—慢—快"的周期变化,春夏季分解速度快于秋冬季,落叶树种凋落叶分解速度快于常绿树种凋落叶,不同坡位凋落叶的分解速度表现为:下坡>中坡>上坡。利用Olson模型对凋落叶分解50%和95%所需时间进行估测,发现落叶树种凋落叶分解50%和95%所需时间分别为0.95~1.66 a和4.13~7.19 a,常绿树种凋落叶分解50%和95%所需时间分别为1.14~1.69 a和4.92~7.30 a,二者无显著性差异。凋落叶分解速率低于中亚热带东部常绿阔叶林和常绿落叶阔叶混交林,但比同区域喀斯特次生林与人工林高。落叶树种凋落叶和常绿树种凋落叶的N元素释放模式为富集—释放模式,C含量随分解时间的波动差异显著,总体在不断减少,而C/N比呈逐步下降的趋势。[结论]由于不同树种凋落叶初始养分含量和叶片理化结构的差异,落叶比常绿叶具有更快的分解速率和养分释放速率,对促进喀斯特森林生态系统物质循环起着积极作用。
        [Objective] The characteristics of litter decomposition in karst forest ecosystems were studied in order to provide scientific basis for prevention and control of rocky desertification and soil and water conservation in karst forest natrue reserve. [Methods] By using 1 mm mesh pore decomposition bag, the decomposition dynamics of different tree species of leaf litters(deciduous and evergreen leaf) in different slope position for 18 months were analyzed, including the dynamic change of litter loss rate and dry weight residue rate, decomposition rate and nutrient release characteristics of Maolan Karst Forest Natrue Reserve. [Results] The decomposition process of litter showed a "fast-slow-fast" cycle, and the decomposition rate in spring and summer was faster than that in autumn and winter. The decomposition rate of deciduous tree litter was faster than that of evergreen tree litters, and the decomposition rate of litters on different slopes was characterized by downhill > mid slope > uphill. This study used the Olson model to estimate the time of decomposition of 50% and 95% leaf litters. The time required for decomposing 50% and 95% of deciduous tree litter is 0.95~1.66 a and 4.13~7.19 a, respectively. The time required for decomposing 50% and 95% of evergreen tree litter is 1.14~1.69 a and 4.92~7.30 a, respectively. The difference between them is not significant. The decomposition rate of leaf litter in the Maolan karst forest was lower than that of the evergreen broad-leaved forest and evergreen-deciduous broad-leaved mixed forest in the eastern subtropical zone, but higher than that of the karst secondary forest and plantation in the same region. The release pattern of N element in deciduous and evergreen leaves is enrichment-release mode, and the C content varies significantly with the decomposition time. The overall trend of C content is reduced, so the C/N ratio is decreasing. [Conclusion] Due to the difference of initial nutrient content and leaf physical and chemical structure of different tree species, deciduous leaf had faster decomposition rate and nutrient release rate than evergreen leaf, which played an active role in promoting material circulation of karst forest ecosystem.
引文
[1] 王凤友.森林凋落量研究综述[J].生态学进展,1989(2):82-89.
    [2] 吴承祯,洪伟,姜志林,等.我国森林凋落物研究进展[J].江西农业大学学报,2000,22(3):405-410.
    [3] 林波,刘庆,吴彦,等.森林凋落物研究进展[J].生态学杂志,2004,23(1):60-64.
    [4] 窦荣鹏,江洪,余树全,等.4种亚热带树木凋落叶的分解研究[J].浙江林学院学报,2010,27(2):163-169.
    [5] 何帆,王得祥,雷瑞德.秦岭火地塘林区四种主要树种凋落叶分解速率[J].生态学杂志,2011,30(3):521-526.
    [6] 魏鲁明,余登利,陈正仁.茂兰喀斯特森林凋落物量的动态研究[J].南京林业大学学报:自然科学版,2009,33(3):31-34.
    [7] 钱正敏,冉景丞,容丽,等.茂兰喀斯特森林凋落物量动态研究[J].安徽农业科学,2009,37(8):3485-3487,3523.
    [8] 俞国松,王世杰,容丽,等.茂兰喀斯特森林主要演替群落的凋落物动态[J].植物生态学报,2011,35(10):1019-1028.
    [9] 熊红福,王世杰,容丽,等.普定喀斯特地区不同演替阶段植物群落凋落物动态[J].生态学杂志,2013,32(4):802-806.
    [10] 朱双燕,王克林,曾馥平,等.桂西北喀斯特次生林凋落物养分归还特征[J].生态环境学报,2009,18(1):274-279.
    [11] 曾昭霞,刘孝利,王克林,等.桂西北喀斯特区原生林与次生林凋落物及养分归还特征比较[J].生态环境学报,2010,19(1):146-151.
    [12] 卢晓强,杨万霞,丁访军,等.茂兰喀斯特地区原始林凋落物量动态与养分归还[J].生态与农村环境学报,2014,30(5):614-619.
    [13] 曾昭霞,王克林,刘孝利,等.桂西北喀斯特区原生林与次生林鲜叶和凋落叶化学计量特征[J].生态学报,2016,36(7):1907-1914.
    [14] 舒利贤,皮发剑,喻理飞,等.黔中喀斯特地区典型次生林内凋落叶化学计量特征[J].河南科技大学学报:自然科学版,2017,38(5):60-64,7.
    [15] 郭培培,江洪,余树全,等.亚热带6种针叶和阔叶树种凋落叶分解比较[J].应用与环境生物学报,2009,15(5):655-659.
    [16] Olson J S.Energy storage and the balance of producers and decomposers in ecological systems[J].Ecology,1963,44(2):322-331.
    [17] 孙志高,刘景双.湿地枯落物分解及其对全球变化的响应[J].生态学报,2007,27(4):1606-1618.
    [18] Moore T R,Trofymow J A,Taylor B,et al.Litter decomposition rates in Canadian forests[J].Global Change Biology,2010,5(1):75-82.
    [19] 游巍斌,刘勇生,何东进,等.武夷山风景名胜区不同天然林凋落物分解特征[J].四川农业大学学报,2010,28(2):141-147.
    [20] 王相娥,薛立,谢腾芳.凋落物分解研究综述[J].土壤通报,2009,40(6):1473-1478.
    [21] 曾锋,邱治军,许秀玉.森林凋落物分解研究进展[J].生态环境学报,2010,19(1):239-243.
    [22] 许晓静,张凯,刘波,等.森林凋落物分解研究进展[J].中国水土保持科学,2007,5(4):108-114.
    [23] 曾昭霞,刘孝利,宋希娟,等.桂西北喀斯特区原生林与次生林凋落物量及其降解[J].生态学杂志,2011,30(2):201-207.
    [24] 王希华,黄建军,闫恩荣.天童国家森林公园常见植物凋落叶分解的研究[J].植物生态学报,2004,28(4):457-467.
    [25] 潘冬荣,柳小妮,申国珍,等.神农架不同海拔典型森林凋落物的分解特征[J].应用生态学报,2013,24(12):3361-3366.
    [26] 李海涛,于贵瑞,李家永,等.井冈山森林凋落物分解动态及磷?钾释放速率[J].应用生态学报,2007,18(2):233-240.
    [27] 王庆玲.黔中地区几种喀斯特次生林凋落物生态功能研究[D].贵州贵阳:贵州师范大学,2009.
    [28] 姚健.喀斯特人工林凋落物特性及对土壤生态功能影响[D].江苏南京:南京林业大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700