用户名: 密码: 验证码:
双过渡层阴极对流延法制备的阳极支撑直接碳固体氧化物燃料电池性能的改善作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Performance Improvement of Anode-Supported Direct Carbon Solid Oxide Fuel Cells Prepared by Tape Casting with Double-Interlayer Cathode
  • 作者:汪维 ; 刘志军 ; 张亚鹏 ; 刘佩佩 ; 刘美林 ; 刘江
  • 英文作者:Wang Wei;Liu Zhijun;Zhang Yapeng;Liu Peipei;Liu Meilin;Liu Jiang;Guangzhou Key Laboratory for Surface Chemistry of Energy Materials,New Energy Research Institute,School of Environment and Energy,South China University of Technology;School of Materials Science & Engineering,Georgia Institute of Technology;
  • 关键词:固体氧化物燃料电池 ; 阳极支撑 ; 流延法 ; 双过渡层阴极 ; 碳燃料 ; 稀土
  • 英文关键词:solid oxide fuel cell;;anode-supported;;tape casting;;double-interlayer cathode;;carbon fuel;;rare earths
  • 中文刊名:XTXB
  • 英文刊名:Journal of the Chinese Society of Rare Earths
  • 机构:华南理工大学环境与能源学院新能源研究所广州市能源材料表面化学重点实验室;美国佐治亚理工学院材料科学与工程系;
  • 出版日期:2018-12-24 09:20
  • 出版单位:中国稀土学报
  • 年:2019
  • 期:v.37;No.178
  • 基金:国家自然科学基金项目(91745203,U1601207);; 广东省公共研究与能力建设专项基金项目(2014A010106008);; 广东省引进创新创业团队项目(2014ZT05N200)资助
  • 语种:中文;
  • 页:XTXB201902012
  • 页数:9
  • CN:02
  • ISSN:11-2365/TG
  • 分类号:107-115
摘要
采用流延法制备了阳极支撑的固体氧化物燃料电池(SOFC),电解质材料为钇稳定化氧化锆(YSZ),阳极为镍和YSZ构成的金属陶瓷(Ni-YSZ),阴极为LSCF-GDC/LSCF复合材料,同时在阴极与电解质之间制备了YSZ-GDC/GDC双过渡层。分别采用含3%的加湿H_2和活性炭为燃料,对此电池的输出性能及阻抗谱进行测试。采用加湿H_2测试的结果表明:在800℃下,采用双过渡层电池的开路电压达到1 V,最大功率密度为680 mW·cm~(-2),比未改良电池的最大功率密度(372 mW·cm~(-2))提高了83%。直接采用固体碳为燃料时,具有双过渡层阴极的电池在850℃时的开路电压达到0.95 V,最大输出功率密度达429 mW·cm~(-2),几乎比无过渡层阴极的电池(225 mW·cm~(-2))高出1倍,特别是双过渡层阴极还使直接使用碳燃料的SOFC(DC-SOFC)的燃料利用率提高了33%。
        An anode-supported solid oxide fuel cell(SOFC) was fabricated by a tape casting technique. Yttrium stabilized zirconia(YSZ) was used as the material of electrolyte, a cermet of nickel and YSZ as the material of anode, and composite of LSCF-GDC as the cathode material. YSZ-GDC and GDC interlayers were prepared between the cathode and the electrolyte film. The output performance and impedance spectrum of cells were tested with 3% humidified hydrogen and solid carbon as fuel, respectively. It is found that the open circuit voltage(OCV) of a SOFC operated on humidified hydrogen reaches 1.0 V at 800 ℃. A maximum power density of a SOFC with the double-interlayer cathode(680 mW·cm~(-2)) is 83% larger than the cell without interlayers(372 mW·cm~(-2)). Meanwhile, when carbon is directly used as the fuel, a SOFC with the addition of double-interlayer shows OCV of 0.95 V at 850 ℃. Its maximum power density is 429 mW·cm~(-2), which is almost twice of that of a similar direct carbon SOFC without the interlayers(225 mW·cm~(-2)). Especially, the double-interlayer cathode increases the fuel utilization of a direct carbon SOFC(DC-SOFC) by 33%.
引文
[1] Minh N Q. Ceramic fuel cells [J]. J. Am. Ceram. Soc., 1993, 76(3): 563.
    [2] Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors? [J]. J. Chem. Rev., 2004, 104(10): 4245.
    [3] McIntosh S, Gorte R J. Direct hydrocarbon solid oxide fuel cells [J]. J. Chem. Rev., 2004, 104(10): 4845.
    [4] 余亮, 于方永, 苑莉莉, 刘江. 银基陶瓷复合电极的电性能及其在固体氧化物燃料电池中的应用 [J]. 物理化学学报, 2016, 32(2): 503.Yu L, Yu F Y, Yuan L L, Liu J. Electrical performance of Ag-based ceramic composite electrodes and their application in solid oxide fuel cells [J]. Acta Physico-Chimica Sinica, 2016, 32: 503.
    [5] 苑莉莉, 蔡位子, 张亚鹏, 于方永, 余亮, 刘江. Ag-GDC复合电极的性能及其在直接碳SOFC中的应用 [J]. 中国稀土学报, 2015, 33(6): 724.Yuan L L, Cai W Z, Zhang Y P, Yu F Y, Yu L, Liu J. Performance of Ag-GDC composite electrode in direct carbon solid oxide fuel cell [J]. Journal of the Chinese Society of Rare Earths, 2015, 33(6): 724.
    [6] Zhang Y P, Yu F Y, Wang X Q, Zhou Q, Liu J, Liu M L. Direct operation of Ag-based anode solid oxide fuel cells on propane [J]. J. Power Sources, 2017, 366: 56.
    [7] Bai Y H, Liu J, Gao H, Bai Y H. Dip coating technique in fabrication of cone-shaped anode-supported solid oxide fuel cells [J]. J. Alloys Compd., 2009, 480(2): 554.
    [8] Jin C, Liu J, Li L H, Bai Y H. Electrochemical properties analysis of tubular NiO-YSZ anode-supported SOFCs fabricated by the phase-inversion method [J]. J. Membrane. Sci., 2009, 341(1): 233.
    [9] He T M, Zhe L, Pei L, Liu Z G, Su W H. Study on preparation and properties of YSZ electrolyte membrane tubes with low cost [J]. J. Alloys Compd., 2002, 33(1): 231.
    [10] Snijkers F, Wilde A D, Mullens S, Luyten J. Aqueous tape casting of yttria stabilised zirconia using natural product binder [J]. J. Eur. Ceram. Soc., 2004, 24(6): 1107.
    [11] Howatt G N, Breekenridge R G, Brownlow J M. Fabrication of thin ceramic sheets for capacitors [J]. J. Am. Ceram. Soc., 2006, 30(8): 237.
    [12] Drelich J, Chibowski E, Meng D D, Terpilowski K. Hydrophilic and superhydrophilic surfaces and materials [J]. Soft. Matter., 2011, 7(21): 9804.
    [13] Park J, Hong S H, Choa Y, Kim J. Fabrication and magnetic properties of LTCC NiZnCu ferrite thick films [J]. Phys. Stat. Sol. (a), 2004, 201(8): 1790.
    [14] 孟广耀, 程继贵, 李海滨. 一种中温固体氧化物燃料电池PEN 多层膜及其制造方法 [P]. 中国专利: CN 1409427, 2001.Meng G Y, Cheng J G, Li H B. A medium temperature solid oxide fuel cell PEN multilayer film and its manufacturing method [P]. China Patent: CN 1409427, 2001.
    [15] Teraoka Y, Zhang H M, Okamoto K, Yamazoe N. Mixed ionic-electronic conductivity of La1-xSrxCo1-yFeyO3-δ perovskite-type oxides [J]. Mat. Res. Bull., 1988, 23(1): 51.
    [16] Khan M Z, Mehran M T, Song R H, Lee J W, Lee S B, Lim T H, Park S J. Effect of GDC interlayer thickness on durability of solid oxide fuel cell cathode [J]. Ceram. Int., 2016, 42(6): 6978.
    [17] Wu W M, Zhao Z, Zhang X M, Liu Z B, Cui D A, Tu B F, Ou D R, Cheng M. Structure-designed gadolinia doped ceria interlayer for solid oxide fuel cell [J]. Electrochem. Commun., 2016, 71: 43.
    [18] Tsai T, Barnett S A. Increased solid-oxide fuel cell power density using interfacial ceria layers [J]. Solid State Ionics, 1997, 98(3-4): 191.
    [19] Wang F F, Brito M E, Yamaji K, Cho D-H, Nishi M, Kishimoto H, Horita T, Yokokawa H. Effect of polarization on Sr and Zr diffusion behavior in LSCF/GDC/YSZ system [J]. Solid State Ionics, 2014, 262(9): 454.
    [20] 朱晓东, 孙克宁, 乐士儒, 袁一星. CeO2阻挡层在SSZ基SOFC中的研究进展 [J]. 电源技术, 2008, 32(3): 124.Zhu X D, Sun K N, Le S R, Yuan Y X. Research progress of CeO2 interlayer in SSZ-based SOFC [J]. Chinese Journal of Power Sources, 2008, 32(3): 124.
    [21] Zhang T S, Ma J, Kong L B, Chan S H, Kilner J. Aging behavior and ionic conductivity of ceria-based ceramics: a comparative study [J]. Solid State Ionics, 2004, 170(3): 209.
    [22] Knibbe R, Hjelm J, Menon M, Pryds N, S?gaard M, Wang H J, Neufeld K. Cathode-electrolyte interfaces with CGO barrier layers in SOFC [J]. J. Am. Ceram. Soc., 2010, 93(9): 2877.
    [23] Mai A, Becker M, Assenmacher W, Tietz F, Hathiramani D, Iverstiffee E, Stover D, Mader W. Time-dependent performance of mixed-conducting SOFC cathodes [J]. Solid State Ionics, 2006, 177(19-25): 1965.
    [24] Uhlenbruck S, Moskalewicz T, Jordan N, Penkalla H J, Buchkremer H P. Element interdiffusion at electrolyte-cathode interfaces in ceramic high-temperature fuel cells[J]. Solid State Ionics, 2009, 180(4-5): 418.
    [25] Kobayashi K, Takahashi I, Shiono M, Dokiya M. Supported Zr(Sc)O2 SOFCs for reduced temperature prepared by electrophoretic deposition [J]. Solid State Ionics, 2002, 152(12): 591.
    [26] Tang Y B, Liu J, Sui J. A novel direct carbon solid oxide fuel cell [J]. ECS Trans., 2009, 25(2): 11109.
    [27] 唐玉宝, 刘江. 以活性炭为燃料的固体氧化物燃料电池 [J]. 物理化学学报, 2010, 26(5): 1191.Tang Y B, Liu J. Fueling solid oxide fuel cells with activated carbon [J]. Acta Physico-Chimca Sinica, 2010, 26(5): 1191.
    [28] Tang Y B, Liu J. Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells [J]. Int. J. Hydrog. Energy, 2010, 35(20): 11188.
    [29] Xie Y M, Tang Y B, Liu J. A verification of the reaction mechanism of direct carbon solid oxide fuel cells [J]. J. Solid State Electr., 2012, 17(1): 121.
    [30] Yokokawa H, Sakai N, Horita T. Thermodynamic and kinetic considerations on degradations in solid oxide fuel cell cathodes [J]. J. Alloys Compd., 2008, 452(2): 41.
    [31] Wankmüller F, Szász J, Joos J. Correlative tomography at the cathode/electrolyte interfaces of solid oxide fuel cells [J]. J. Power Sources, 2017, 360: 399.
    [32] Cai W Z, Liu J, Xie Y M, Xiao J, Liu M L. An investigation on the kinetics of direct carbon solid oxide fuel cells [J]. J. Solid State Electr., 2016, 20(8): 2207.
    [33] Liu J,Zhou M Y,Zhang Y P,Liu P P,Liu Z J,Xie Y M,Cai W Z,Yu F Y,Zhou Q,Wang X Q,Ni M,Liu M L. Electrochemical oxidation of carbon at high temperature:Principles and applications[J]. Energy Fuel,2018,32:4107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700