用户名: 密码: 验证码:
涡轮导向叶片综合冷却效率实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Investigation on Overall Cooling Effectiveness of Turbine Guide Vane
  • 作者:王培枭 ; 郭昊雁 ; 李杰 ; 杨卫华
  • 英文作者:WANG Pei-xiao;GUO Hao-yan;LI Jie;YANG Wei-hua;CollegeofEnergyandPowerEngineering,NanjingUniversityofAstronauticsandAeronautics;Beijing Power Machinery Research Institute;
  • 关键词:综合冷却效率 ; 涡轮导向叶片 ; 流量比 ; 温比 ; 雷诺数 ; 湍流度
  • 英文关键词:Overall cooling effectiveness;;Turbine guide vane;;Mass flow ratio;;Temperature ratio;;Reynolds number;;Turbulence intensity
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:南京航空航天大学能源与动力学院;北京动力机械研究所;
  • 出版日期:2019-02-28 18:13
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.265
  • 基金:北京动力机械研究所对本研究的资助和支持
  • 语种:中文;
  • 页:TJJS201907016
  • 页数:9
  • CN:07
  • ISSN:11-1813/V
  • 分类号:134-142
摘要
为了研究流动参数对涡轮导向叶片综合冷却效率的影响,采用红外热像仪对叶片表面的温度分布进行了测量,得到了叶片的综合冷却效率随流量比、温比、主流进口雷诺数和湍流度的变化规律。实验过程中,次流与主流的流量比分别为0.15,0.18,0.20,0.22和0.24;主次流温比分别为1.4,1.7,1.93和2.2;主流进口雷诺数分别为1.0×10~5,1.1×10~5,1.2×10~5,1.3×10~5和1.4×10~5;主流进口湍流度分别为0.506%,8.156%,14.92%。结果表明,综合冷却效率在前缘处最低,沿流向逐渐升高;增大流量比会显著提高叶片的综合冷却效率,在温比为1.93时,流量比由0.15增大至0.24,综合冷却效率平均增加29.3%;温比和主流进口湍流度的增大均不利于综合冷却效率的提升,流量比为0.20时,温比由1.4增大至2.2,综合冷却效率平均下降46.5%,湍流度由0.506%增大至14.92%,综合冷却效率平均降低15.5%;主流进口雷诺数对叶片综合冷却效率的影响很小。
        In order to study the effects of flow parameters on the overall cooling effectiveness of turbine guide vanes,the temperature distribution on the blade surface was measured by infrared thermograph,and the variation of the overall cooling effectiveness with mass flow ratio,temperature ratio,mainstream inlet Reynolds number and turbulence intensity was obtained. During the experiment,the coolant-to-mainstream mass flow ratios were 0.15,0.18,0.20,0.22 and 0.24;the mainstream-to-coolant temperature ratios were 1.4,1.7,1.93 and 2.2,the mainstream inlet Reynolds numbers were 1.0×10~5,1.1×10~5,1.2×10~5,1.3×10~5 and 1.4×10~5,and the mainstream inlet turbulence intensities were 0.506%,8.156% and 14.92%,respectively. The results show that the overall cooling effectiveness is the lowest at the leading edge and increases gradually along the flow direction. Increasing the mass flow ratio can significantly improve the overall cooling effectiveness of the blade. When the temperature ratio is 1.93,the overall cooling efficiency increases by 29.3% on average as the mass flow ratio increases from 0.15 to 0.24. The increase of temperature ratio and mainstream inlet turbulence intensity is not conducive to the improvement of the overall cooling effectiveness. When the mass flow rate is 0.20,the overall cooling efficiency decreases by 46.5% and 15.5% on average with the increase of temperature ratio from 1.4 to 2.2 and the turbulence intensity from 0.506% to 14.92%. The mainstream inlet Reynolds number has little effect on the overall cooling effectiveness of the blade.
引文
[1]Han J C,Dutta S,Ekkad S.Gas Turbine Heat Transfer and Cooling Technology[M].New York:Taylor and Francis Group,2000.
    [2]Han J C,Park J S.Heat Transfer and Pressure Drop in Blade Cooling Channels with Turbulence Promoters[R].NASA-CR-3837.
    [3]Kwak J S,Han J C.Heat Transfer Coefficients and Film Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade[J].Journal of Turbomachinery,2003,125(4):494-502.
    [4]Kim K,Camci C.Fluid Dynamics and Convective Heat Transfer in Impinging Jets Through Implementation of a High Resolution Liquid Crystal Technique[J].International Journal of Turbo and Jet Engines,1995,12(1).
    [5]刘聪,朱惠人,付仲议,等.涡轮动叶压/吸力面气膜孔冷却特性实验研究[J].推进技术,2016,37(3):511-519.(LIU Cong,ZHU Hui-ren,FU Zhong-yi,et al.Experimental Study of Film Cooling Characteristics on Pressure and Suction Side in a Turbine Blade[J].Journal of Propulsion Technology,2016,37(3):511-519.)
    [6]王克菲,骆剑霞,田淑青,等.叶片吸力面不同位置处气膜冷却特性对比[J].航空动力学报,2017,32(6):1281-1288.
    [7]Murata A,Nishida S,Saito H,et al.Effects of Surface Geometry on Film Cooling Performance at Airfoil Trailing Edge[J].Journal of Turbomachinery,2011,134:171-181.
    [8]刘聪,朱惠人,付仲议,等.涡轮导叶吸力面簸箕型孔气膜冷却特性实验研究[J].推进技术,2016,37(6):1142-1150.(LIU Cong,ZHU Hui-ren,FUZhong-yi,et al.Experimental Study of Film Cooling Characteristics for Dust-Pan Shaped Holes on Suction Side in Turbine Guide Vane[J].Journal of Propulsion Technology,2016,37(6):1142-1150.)
    [9]袁瑞明,浦健,王位,等.温比对第一级导叶端壁气膜冷却特性的影响[J].航空动力学报,2018,33(8):1872-1879.
    [10]周志翔,刘存良,张宗卫,等.主流湍流度对涡轮导向叶片气膜冷却特性影响的实验[J].航空动力学报,2014,29(6):1279-1286.
    [11]贺宜红,刘存良,宋辉,等.不同湍流度下吹风比对涡轮导向叶片吸力面气膜冷却的影响[J].航空动力学报,2018,33(3):521-529.
    [12]蓝占赣.涡轮叶片综合冷却效果模拟实验方法研究[D].南京:南京航空航天大学,2016.
    [13]钟山,刘志刚,朱榕川,等.涡轮导叶综合冷效试验件设计及验证[J].燃气涡轮试验与研究,2014,27(3):34-38.
    [14]邵婧.某型高压涡轮叶片综合冷效数值模拟及气膜优化设计[D].上海:上海交通大学,2014.
    [15]莫唯书.涡轮导向叶片综合冷却效果和冷气流阻特性研究[D].沈阳:沈阳航空航天大学,2018.
    [16]Mensch A,Thole K A.Overall Effectiveness of a Blade Endwall with Jet Impingement and Film Cooling[J].Journal Engineering for Gas Turbines and Power,2014,136(3).
    [17]Williams R P,Dyson T E,Bogard D G,et al.Sensitivity of the Overall Effectiveness to Film Cooling and Internal Cooling on a Turbine Vane Suction Side[J].Journal of Turbomachinery,2014,136(3):1549-1557.
    [18]Rhee D H,Kang Y S,Cha B J,et al.Overall Cooling Effectiveness Measurements on Pressure Side Surface of the Nozzle Guide Vane with Optimized Film Cooling Hole Arrangements[R].ASME GT 2017-63421.
    [19]Venkatasubramanya S,Vasudev S A,Chandel S,et al.Experimental Evaluation of Cooling Effectiveness of High Pressure Turbine Nozzle Guide Vane[R].ASME GT2012-9558.
    [20]周君辉,张靖周.气膜孔局部堵塞对叶片压力面冲击-扰流柱-气膜结构综合冷却效率的影响[J].航空学报,2016,37(9):2729-2738.
    [21]Zhang J Y,Yuan C,Ji P F,et al.Experimental Investigation on the Overall Cooling Effectiveness of T-Type Impinging-Film Cooling[J].Applied Thermal Engineering,2018,128:595-603.
    [22]任孝文,张靖周,谭晓茗,等.折流燃烧室外环前端发散孔综合冷却效率模型实验[J].航空动力学报,2017,32(6):1321-1327.
    [23]李明飞,李雪英,任静,等.综合冷却效率多参数影响分析[J].工程热物理学报,2017,38(12):2720-2724.
    [24]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998.
    [25]常国强,常海萍,王寅会,等.曲面红外测温方向性误差分析与修正方法[J].航空动力学报,2010,25(2):302-307.
    [26]马超,黄名海,葛冰,等.高温风洞中空冷涡轮叶片冷却特性的实验研究[J].推进技术,2016,37(3):496-503.(MA Chao,HUANG Ming-hai,GEBing,et al.Experimental Investigation of Cooling Performance of Air-Cooled Turbine Blade in a High-Temperature Wind Tunnel[J].Journal of Propulsion Technology,2016,37(3):496-503.)
    [27]Holman J P.Experimental Methods for Engineerings[M].New York:McGraw_Hill,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700