用户名: 密码: 验证码:
钙质砂压缩波速与物理性质参数关系研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of the relationship between compression wave velocity and physical properties of calcareous sand
  • 作者:谌民 ; 张涛 ; 单华刚 ; 王新志 ; 孟庆山 ; 余克服
  • 英文作者:CHEN Min;ZHANG Tao;SHAN Hua-gang;WANG Xin-zhi;MENG Qing-shan;YU Ke-fu;College of Civil Engineering and Architecture, Guangxi University;Military Installations Construction Bureau,PLA Navy Logistics Department;Shaoxing Traffic Investment Group Co., Ltd.;State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences;College of Ocean, Guangxi University;
  • 关键词:钙质砂 ; 压缩波速 ; 物理力学参数 ; 侧限压缩
  • 英文关键词:calcareous sand;;compression wave velocity;;physical and mechanical properties;;confined compression
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:广西大学土木建筑工程学院;海军后勤部军事设施建设局;绍兴市交通投资集团有限公司;中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室;广西大学海洋学院;
  • 出版日期:2018-12-07 15:43
  • 出版单位:岩土力学
  • 年:2019
  • 期:v.40;No.303
  • 基金:国家自然科学基金(No.41572297,No.41372316);; 中国科学院青年创新促进会(No.2015272);中国科学院战略性先导科技专项(A类)资助(XDA13010203)~~
  • 语种:中文;
  • 页:YTLX201906027
  • 页数:9
  • CN:06
  • ISSN:42-1199/O3
  • 分类号:253-261
摘要
开展钙质砂纵波波速与物理性质参数关系的试验研究,对珊瑚礁地基无损检测及工程物探具有重要的理论指导意义和工程应用价值。控制试样的物性参数状态,利用制样装置进行波速测量,揭示钙质砂纵波波速与物性参数的相关关系。试验结果表明:含水率是影响纵波波速的主要因素,与纵波波速呈二次函数关系。CT扫描结果表明,试样粒径越大,颗粒内部孔隙越丰富,这导致试样孔隙比越大,波速故而越小,与粒径、孔隙比呈负相关关系。在密实度相同、不均匀系数不同时,级配良好的砂样纵波波速差异不大。经过侧限压缩后,含水率一定时,粉土纵波波速与孔隙比呈二次关系,且与密度呈良好的线性关系。利用粉土易压缩且与纵波波速紧密变化的特点,可积极探索声波在粉土地基密实度检测的工程应用。
        The experimental study on the relationship between P-wave velocity and physical parameters of calcareous sand has important theoretical guiding significance and engineering application value for non-destructive testing of calcareous soil foundation and geophysical exploration. By controlling the state of the tested specimens under different conditions, the P-wave velocity was measured to investigate the relationship between the P-wave velocity and physical parameters. Experimental results show that the water content is the main factor that affects the variation of compression wave velocity in a certain density range, and there is a quadratic curve relation between P-wave velocity and water content. Generally, the results of CT scanning show that the larger the particle size, the more abundant inner pores in the particles, which leads to the larger the void ratio and the smaller the P-wave velocity. The P-wave velocity has a negative correlation with particle size and pore ratio. When the density is fixed and uniformity coefficient is different, the compression wave velocity is basically the same in well-graded sand. After compression, a good quadratic relationship is established between P-wave velocity and void ratio under the constant water content. The P-wave velocity is linearly related with soil density. Therefore, the results can be applied to the nondestructive detection of calcareous soil foundation compactness.
引文
[1]李广信.高等土力学[M].北京:清华大学出版社,2016.LI Guang-xin.Advanced soil mechanics[M].Beijing:Tsinghua University Press,2016.
    [2]中华人民共和国住房和城乡建设部.GB 50021-2001岩土工程勘察规范[S].北京:中国建筑工业出版社,2009.Ministry of Housing and Urban-Rural Development of the People’s Republic of China.GB 50021-2001 Code for investigation of geotechnical engineering[S].Beijing:China Architecture and Building Press,2009.
    [3]王宇,李晓,胡瑞林,等.岩土超声波测试研究进展及应用综述[J].工程地质学报,2015,23(2):287-300.WANG Yu,LI Xiao,HU Rui-lin,et al.Review of research process and application of ultrasonic testing for rock and soil[J].Journal of Engineering Geology,2015,23(2):287-300.
    [4]袁建新,蔡忠理,朱国甫.砂的物理力学性质与声速的关系[J].岩土力学,1987,8(2):22-28.YUAN Jian-xin,CAI Zhong-li,ZHU Guo-fu.Relations between sound wave velocities and physical properties of quartz sands[J].Rock and Soil Mechanics,1987,8(2):22-28.
    [5]王大雁,朱元林,马巍,等.冻土超声波波速与冻土物理力学性质试验研究[J].岩石力学与工程学报,2003,22(11):1837-1840.WANG Da-yan,ZHU Yuan-lin,MA Wei,et al.Testing study on relationship between ultrasonic wave velocity sand physic-mechanical properties of frozen soils[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(11):1837-1840.
    [6]赵淑萍,朱元林,何平,等.冻土动力学参数测试研究[J].岩石力学与工程学报,2003,22(增刊2):2677-2681.ZHAO Shu-ping,ZHU Yuan-lin,HE Ping,et al.Testing study on dynamic mechanics parameters of frozen soil[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(Suppl.2):2677-2681.
    [7]王大雁,朱元林,赵淑萍,等.超声波法测定冻土动弹性力学参数试验研究[J].岩土工程学报,2002,24(4):612-615.WANG Da-yan,ZHU Yuan-lin,ZHAO Shu-ping,et al.Study on experimental determination[J].Chinese Journal of Geotechnical Engineering,2002,24(4):612-615.
    [8]凌贤长,徐学燕,徐春华,等.冻结哈尔滨粉质黏土超声波速测定试验研究[J].岩土工程学报,2002,24(4):456-459.LING Xian-zhang,XU Xue-yan,XU Chun-hua,et al.Study on frozen Harbin silty clay through its measuring tests of ultrasonic velocity[J].Chinese Journal of Geotechnical Engineering,2002,24(4):456-459.
    [9]王峥辉.下蜀黄土超声波波速与物理力学性质试验研究[D].南京:河海大学,2007.WANG Zheng-hui.Testing study on relationship among P-wave velocity and physical-mechanical properties in Xiashu loess[D].Nanjing:Hohai University,2007.
    [10]BIOT M A.Theory of elasticity and consolidation for a porous anistropic solid[J].Journal of Applied Physics,1955,26:128-185.
    [11]BIOT M A.Theory of propagation of elastic waves in a fluid-saturated porous solid:lower frequency range[J].The Journal of the Acoustical Society of America,1956,28:168.
    [12]BIOT M A.Theory of propagation of elastic waves in a fluid-saturated porous solid:higher frequency range[J].The Journal of the Acoustical Society of America,1956,28:179-191.
    [13]BIOT M A,WILLIS D G.The elastic coefficient of the theory of consolidation[J].Journal of Applied Physics,1957,24:95-601.
    [14]HAMILTON E L.Geo-acoustic modeling of the sea floor[J].The Journal of the Acoustical Society of America,1980,8(5):1313-1340.
    [15]ANDERSON R S.Statistical correlation of physical properties and sound velocity in sediments[C]//Physics of Sound in Marine Sediment.New York:Plenum Press,1974:481-518.
    [16]唐永禄.海底沉积物孔隙度与声速的关系[J].海洋学报,1998,20(6):39-43.TANG Yong-lu.The relationship between porosity of seabed sediment sound velocity[J].Acta Oceanologica Sinica,1998,20(6):39-43.
    [17]卢博,李赶先,孙东怀,等.中国东南近海海底沉积物声学物理性质及其相关关系[J].热带海洋学报,2006,25(2):12-17.LU Bo,LI Gan-xian,SUN Dong-huai,et al.Acoustic-physical properties of seafloor sediments from nearshore southeast China and their correlations[J].Journal of Tropical Oceanography,2006,25(2):12-17.
    [18]邹大鹏,吴百海,卢博,等.海底沉积物声速实验室测量结果校正研究[J].热带海洋学报,2008,27(1):27-31.ZOU Da-peng,WU Bai-hai,LU Bo,et al.A study on correction of acoustic velocity in seafloor sediments measured in laboratory[J].Journal of Tropical Oceanography,2008,27(1):27-31.
    [19]程净净,傅命佐,孟祥梅,等.南黄海中部沉积物物理性质与压缩波速相关性分析[J].中国海洋大学学报(自然科学版),2011,41(增刊1):331-336.CHENG Jing-jing,FU Ming-zuo,MENG Xiang-mei,et al.Correlation analysis of physical properties and compressional wave velocity of seafloor sediments from the central part of south Yellow Sea[J].Periodical of Ocean University of China,2011,41(Suppl.1):331-336.
    [20]胡明鉴,蒋航海,朱长歧,等.钙质砂的渗透特性及其影响因素探讨[J].岩土力学,2017,38(10):2895-2900.HU Ming-jian,JIANG Hang-hai,ZHU Chang-qi,et al.Discussion on permeability of calcareous sand and its influencing factors[J].Rock and Soil Mechanics,2017,38(10):2895-2900.
    [21]WANG Xing,WANG Xin-Zhi,ZHU Chang-Qi,et al.Shear tests of interfaces between calcareous sand and steel[J].Marine Georesources and Geotechnology,2018,DOI:10.1080/1064119X.2018.1529845.
    [22]WANG Xing,ZHU Chang-Qi,WANG Xin-Zhi,et al.Study of dilatancy behaviors of calcareous soils in a triaxial test[J].Marine Georesources and Geotechnology,2018,DOI:10.1080/1064119X.2018.1526236.
    [23]王新志,谌民,魏厚振,等.车辆荷载作用下钙质砂路基的动态响应试验研究[J].岩土力学,2018,39(11):4093-4101.WANG Xin-zhi,CHEN Min,WEI Hou-zhen,et al.Experimental study on dynamic response of calcareous sand subgrade under vehicle load[J].Rock and Soil Mechanics,2018,39(11):4093-4101.
    [24]王新志,翁贻令,王星,等.钙质土颗粒咬合作用机制[J].岩土力学,2018,39(9):3113-3120.WANG Xin-zhi,WENG Yi-ling,WANG Xing,et al.Investigation of interlocking mechanism of calcareous soil[J].Rock and Soil Mechanics,2018,39(9):3113-3120.
    [25]冯若.超声手册[M].南京:南京大学出版社,1999.FENG Ruo.Ultrasound manual[M].Nanjing:Nanjing University Press,1999.
    [26]李赶先,龙建军.南海南部海域岛礁区海底珊瑚砂声速影响因素的初步研究[J].海洋学报,2014,36(5):152-160.LI Gan-xian,LONG Jian-jun.A preliminary study of the sound velocity influence factors of islands sea area in southern South China Sea[J].Acta Oceanologica Sinica,2014,36(5):152-160.
    [27]林宗元.岩土工程试验监测手册[M].北京:中国建筑工业出版社,2005.LIN Zong-yuan.Manual for geotechnical engineering test monitoring[M].Beijing:China Architecture&Building Press,2005.
    [28]王新志,王星,胡明鉴,等.吹填人工岛地基钙质粉土夹层的渗透特性研究[J].岩土力学,2017,38(11):3127-3135.WANG Xin-zhi,WANG Xing,HU Ming-jian,et al.Study of permeability of calcareous silty layer of foundation at an artificial reclamation island[J].Rock and Soil Mechanics,2017,38(11):3127-3135.
    [29]孙宗勋,卢博.南沙群岛珊瑚礁灰岩弹性波性质的研究[J].工程地质学报,1999,7(2):79-84.SUN Zong-xun,LU Bo.Elastic wave properties of coral reef rock in Nansha islands[J].Journal of Engineering Geology,1999,7(2):79-84.
    [30]赵明阶,吴德伦.工程岩体的超声波分类及强度预测[J].岩石力学与工程学报,2000,19(1):89-92.ZHAO Ming-jie,WU De-lun,The ultrasonic identification of rock mass classification and rock mass strength prediction[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(1):89-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700