用户名: 密码: 验证码:
金属硫化物微生物氧化的机制和效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microbial oxidation of metal sulfides and its consequences
  • 作者:陆现彩 ; 李娟 ; 刘欢 ; 李伟洁 ; 王睿勇 ; 陆建军
  • 英文作者:LU XianCai;LI Juan;LIU Huan;LI WeiJie;WANG RuiYong;LU JianJun;MOE Key Lab of Surficial Geochemistry,School of Earth Sciences & Engineering,Nanjing University;State Key Lab for Mineral Deposits Research,School of Earth Sciences & Engineering,Nanjing University;School of Life Sciences,Nanjing University;
  • 关键词:金属硫化物 ; 微生物 ; 氧化机制 ; 环境效应 ; 生物冶金 ; 元素循环
  • 英文关键词:Metal sulfide;;Microorganism;;Oxidation mechanism;;Environmental consequence;;Microbial hydrometallurgy;;Elemental cycling
  • 中文刊名:YSXB
  • 英文刊名:Acta Petrologica Sinica
  • 机构:表生地球化学教育部重点实验室南京大学地球科学与工程学院;内生金属矿床成矿机制国家重点实验室南京大学地球科学与工程学院;南京大学生命科学学院;
  • 出版日期:2019-01-15
  • 出版单位:岩石学报
  • 年:2019
  • 期:v.35
  • 基金:国家“973”计划项目(2014CB846004);; 国家自然科学基金项目(41602029、41425009)联合资助
  • 语种:中文;
  • 页:YSXB201901013
  • 页数:11
  • CN:01
  • ISSN:11-1922/P
  • 分类号:159-169
摘要
岩石露头和矿山废弃物中的金属硫化物在地表、近地表条件下的氧化作用往往导致多种环境问题,因此,金属硫化物的地表风化一直是备受关注的表生过程之一。越来越多的证据表明微生物对矿物的氧化在金属硫化物风化过程中发挥着重要作用。实验研究发现:微生物在金属硫化物表面附着并形成微生物膜,在矿物-微生物膜界面微环境中存在着强烈的微生物氧化和化学氧化作用,两种氧化作用相互协同、共同促进。在此过程中,金属硫化物的S、As、Fe等元素经历了复杂的电子传递、逐级氧化的动力学过程,最终形成稳定的高铁硫酸盐或氧化物,并形成大量的酸性排水。该过程受多种因素的影响,包括细菌种类、光照和溶液Fe~(2+)浓度等。金属硫化物的微生物氧化直接导致重金属大量释放和严重的环境危害,释放的酸性排水还引发碳酸盐矿物分解和CO_2排放,会对全球碳循环产生不可忽视的影响。在地球演化的早期阶段,金属硫化物氧化消耗大气氧气可能导致大氧化进程滞后。尽管关于金属硫化物-微生物相互作用研究取得了长足的进展,但金属硫化物微生物氧化的分子机制和全球尺度的元素地球化学循环还有待深入研究,原位纳米观测技术的引入和全球物质循环模型研究具有必要性和紧迫性,同时也对生物冶金技术的发展有着重要的意义。
        The oxidation of various sulfides in mining wastes and rock outcrops commonly leads to environmental problems.Therefore,surface weathering of metal sulfide has been one of the most concerned epigenetic processes. More and more geological facts and experiments indicate microorganism play crucial roles in these processes. Microorganism cells tend to attach onto sulfide surface and construct biofilms. In the interface microenvironment between mineral surface and biofilm,microbial oxidation and chemical oxidation mutually promote the decomposition of sulfides and intensively erode the sulfide surfaces. The elements of the sulfide( e. g.,S,As and Fe) experience complicate processes of electron transferring and step-by-step oxidation,and produce ferric sulfates and oxides finally as well as large amounts of acid mine drainage bearing various heavy metals. The microbial oxidation is generally influenced by factors,such as bacteria type,light and Fe~(2+)concentrations in solution. Therefore,the release of heavy metals due to sulfides oxidation commonly brings serious environmental harm,and the produced AMD leads to decomposition of carbonate minerals and thereafter influences the global carbon cycle. Meanwhile,the consumption of oxygen probably had slowed down the oxygenation of earth atmosphere in the Archean-Proterozoic eras. Although the understanding on the microbe-mineral interaction has been greatly promoted in last decades,there are plenty rooms for the studies on the mechanism at atomic level and the impacts of the microbial oxidation on the geochemical cycles at the global level,and thus it is imperative and urgent to employ in-situ measurement techniques and global geochemical models. The related studies also favor the development of biological metallurgical technologies.
引文
Acero P,Ayora C,TorrentóC and Nieto JM.2006.The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite.Geochimica et Cosmochimica Acta,70(16):4130-4139
    Aguirre P,Guerrero K,Sanchez-Rodriguez A,Gentina JC and Schippers A.2018.Making sticky cells:Effect of galactose and ferrous iron on the attachment of Leptospirillum ferrooxidans to mineral surfaces.Research in Microbiology,doi:10.1016/j.resmic.2018.08.005
    Baba AA,Adekola FA,Atata RF,Ahmed RN and Panda S.2011.Bioleaching of Zn(II)and Pb(II)from Nigerian sphalerite and galena ores by mixed culture of acidophilic bacteria.Transactions of Nonferrous Metals Society of China,21(11):2535-2541
    Bai J.2014.The study of the thermophiles bioleaching behaviours and mechanisms of chalcopyrite with distinct genetic types.Ph.D.Dissertation.Beijing:Beijing General Research Institute for Nonferrous Metals,1-112(in Chinese with English summary)
    Ban JR,Gu GH and Hu KT.2013.Bioleaching and electrochemical property of marmatite by Leptospirillum ferrooxidans.Transactions of Nonferrous Metals Society of China,23(2):494-500
    Berner KE and Berner RA.2012.Global Environment:Water,Air,and Geochemical Cycles.2ndEdition.Princeton:Princeton University Press,369-382
    Bevilaqua D,Leite ALLC,Garcia Jr O and Tuovinen OH.2002.Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks.Process Biochemistry,38(4):587-592
    Bevilaqua D,Garcia Jr O and Tuovinen OH.2010.Oxidative dissolution of bornite by Acidithiobacillus ferrooxidans.Process Biochemistry,45(1):101-106
    Borkowski A,Parafiniuk J,Wolicka D and Kowalczyk P.2013.Geomicrobiology of acid mine drainage in the weathering zone of pyrite-bearing schists in the Rudawy Janowickie Mountains(Poland).Geological Quarterly,57(4):601-612
    Calmels D,Gaillardet J,Brenot A and France-Lanord C.2007.Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin:Climatic perspectives.Geology,35(11):1003-1006
    Castelle C,Guiral M,Malarte G,Ledgham F,Leroy G,Brugna M and Giudici-Orticoni MT.2008.A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes,isolated from the extreme acidophile Acidithiobacillus ferrooxidans.Journal Biological Chemistry,283(38):25803-25811
    Castillo A,Tello M,Ringwald K,Acu1a LG,Quatrini R and Orellana O.2018.A DNA segment encoding the anticodon stem/loop of tRNA determines the specific recombination of integrative-conjugative elements in Acidithiobacillus species.RNA Biology,15(4-5):492-499
    Cohn CA,Mueller S,Wimmer E,Leifer N,Greenbaum S,Strongin DRand Schoonen MAA.2006.Pyrite-induced hydroxyl radical formation and its effect on nucleic acids.Geochemical Transactions,7:3-11
    Diaby N,Dold B,Pfeifer HR,Holliger C,Johnson DB and Hallberg KB.2007.Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste.Environmental Microbiology,9(2):298-307
    Edwards KJ,Bond PL,Druschel GK,Mc Guire MM,Hamers RJ and Banfield JF.2000a.Geochemical and biological aspects of sulfide mineral dissolution:Lessons from Iron Mountain,California.Chemical Geology,169(3-4):383-397
    Edwards KJ,Bond PL,Gihring TM and Banfield JF.2000b.An archaeal iron-oxidizing extreme acidophile important in acid mine drainage.Science,287(5459):1796-1799
    Edwards KJ,Bach W,Mc Collum TM and Rogers DR.2004.Neutrophilic iron-oxidizing bacteria in the ocean:Their habitats,diversity,and roles in mineral deposition,rock alteration,and biomass production in the deep-sea.Geomicrobiology Journal,21:393-404
    Emerson D,Fleming EJ and Mc Beth JM.2010.Iron-oxidizing bacteria:An environmental and genomic perspective.Annual Review of Microbiology,64:561-583
    Fowler TA,Holmes PR and Crundwell FK.1999.Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans.Applied and Environmental Microbiology,65(7):2987-2993
    Gadd GM.1990.Heavy metal accumulation by bacteria and other microorganisms.Experientia,46(8):834-840
    Ghosh S,Mohanty S,Akcil A,Sukla LB and Das AP.2016.A greener approach for resource recycling:Manganese bioleaching.Chemosphere,154:628-639
    Gómez E,Blázquez ML,Ballester A and González F.1996.Study by SEM and EDS of chalcopyrite bioleaching using a new thermophilic bacteria.Minerals Engineering,9(9):985-999
    Harneit K,G9ksel A,Kock D,Klock JH,Gehrke T and Sand W.2006.Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans,Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans.Hydrometallurgy,83(1-4):245-254
    He H,Xia JL,Yang Y,Jiang HC,Xiao CQ,Zheng L,Ma CY,Zhao YD and Qiu GZ.2009.Sulfur speciation on the surface of chalcopyrite leached by Acidianus manzaensis.Hydrometallurgy,99(1-2):45-50
    Herbel M and Fendorf S.2006.Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands.Chemical Geology,228(1-3):16-32
    Hiroyoshi N,Miki H,Hirajima T and Tsunekawa M.2000.A model for ferrous-promoted chalcopyrite leaching.Hydrometallurgy,57(1):31-38
    Hiroyoshi N,Miki H,Hirajima T and Tsunekawa M.2001.Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions.Hydrometallurgy,60(3):185-197
    Holmes PR,Fowler TA and Crundwell FK.1999.The mechanism of bacterial action in the leaching of pyrite by Thiobacillus ferrooxidans.An electrochemical study.Journal of the Electrochemical Society,146(8):2906-2912
    Hong J,Liu LH,Luo Y,Tan WF,Qiu GH and Liu F.2018.Photochemical oxidation and dissolution of arsenopyrite in acidic solutions.Geochimica et Cosmochimica Acta,239:173-185
    Johnson DB.2018.The evolution,current status,and future prospects of using biotechnologies in the mineral extraction and metal recovery sectors.Minerals,8(8):343
    Jones RA,Koval SF and Nesbitt HW.2003.Surface alteration of arsenopyrite(Fe As S)by Thiobacillus ferrooxidans.Geochimica et Cosmochimica Acta,67(5):955-965
    Jorjani E and Ghahreman A.2017.Challenges with elemental sulfur removal during the leaching of copper and zinc sulfides,and from the residues:A review.Hydrometallurgy,171:333-343
    Kai T,Nagano T,Fukumoto T,Nakajima M and Takahashi T.2007.Autotrophic growth of Acidithiobacillus ferrooxidans by oxidation of molecular hydrogen using a gas-liquid contactor.Bioresource Technology,98:460-464
    Kanao T,Kamimura K and Sugio T.2007.Identification of a gene encoding a tetrathionate hydrolase in Acidithiobacillus ferrooxidans.Journal of Biotechnology,132(1):16-22
    Kelly DP and Wood AP.2000.Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen.nov.,Halothiobacillus gen.nov.and Thermithiobacillus gen.nov.International Journal of Systematic and Evolutionary Microbiology,50(2):511-516
    Kleinmann RLP.1999.Bactericidal control of acidic drainage.In:Brady KBC,Smith MW and Schueck J(eds.).Coal Mine Drainage Prediction and Pollution Prevention in Pennsylvania.Harrisburg:Pennsylvania Department of Environmental Protection,15.1-15.6
    Li J,Lu JJ,Lu XC,Wang RC and Su GZ.2009.Experimental study on the oxidation of chalcopyrite by Acidothiobacillus ferrooxidans.Journal of Nanjing University(Natural Sciences),45(2):315-322(in Chinese with English abstract)
    Li J,Lu JJ,Lu XC,Tu BW,Ouyang BJ,Han XD and Wang RC.2016.Sulfur transformation in microbially mediated pyrite oxidation by Acidithiobacillus ferrooxidans:Insights from X-ray photoelectron spectroscopy-based quantitative depth profiling.Geomicrobiology Journal,33(2):118-134
    Lilova K and Karamanev D.2005.Direct oxidation of copper sulfide by a biofilm of Acidithiobacillus ferrooxidans.Hydrometallurgy,80(3):147-154
    Lindsay MBJ,Blowes DW,Condon PD and Ptacek CJ.2009.Managing pore-water quality in mine tailings by inducing microbial sulfate reduction.Environmental Science&Technology,43(18):7086-7091
    Liu H,Lu XC,Zhang LJ,Xiang WL,Zhu XY,Li J,Wang XL,Lu JJand Wang RC.2018.Collaborative effects of Acidithiobacillus ferrooxidans and ferrous ions on the oxidation of chalcopyrite.Chemical Geology,493:109-120
    Liu HC,Nie ZY,Xia JL,Zhu HR,Yang Y,Zhao CH,Zheng L and Zhao YD.2015.Investigation of copper,iron and sulfur speciation during bioleaching of chalcopyrite by moderate thermophile Sulfobacillus thermosulfidooxidans.International Journal of Mineral Processing,137:1-8
    Lottermoser BG.2007.Mine Wastes:Characterization,Treatment and Environmental Impacts.2ndEdition.Berlin Heidelberg:SpringerVerlag,43-198
    Lu AH.2005.New advances in the study of environmental mineralogical materials:Pollution treatment by inorganic minerals:The fourth category of pollution treatment methods.Earth Science Frontiers,12(1):196-205(in Chinese with English abstract)
    Lu AH,Li Y,Jin S,Wang X,Wu XL,Zeng CP,Li Y,Ding HR,Hao RX,Lv M,Wang CQ,Tang YQ and Dong HL.2012.Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis.Nature Communications,3:768
    Lu JJ,Lu XC,Zhu CJ,Sun DP,Gao JF and Wang RC.2005.The effect of Thiobacillus ferrooxidans on the distribution of metal trace elements of acid mine drainage resulting in environmental pollution.Journal of Nanjing University(Natural Sciences),41(2):113-119(in Chinese with English abstract)
    Lu JJ,Lu XC,Wang RC,Li J,Zhu CJ and Gao JF.2006.Pyrite surface after Thiobacillus ferrooxidans leaching at 30℃.Acta Geologica Sinica,80(3):451-455
    Lu XC,Lu JJ,Zhu CJ,Liu XD,Wang RC,Li Q and Xu ZW.2005.Preliminary study on surface properties of iron sulfate formed by microbially induced mineralization.Geological Journal of China Universities,11(2):194-198(in Chinese with English abstract)
    Lu XC and Wang HM.2012.Microbial oxidation of sulfide tailings and the environmental consequences.Elements,8(2):119-124
    Mc Guire MM,Edwards KJ,Banfield JF and Hamers RJ.2001.Kinetics,surface chemistry,and structural evolution of microbially mediated sulfide mineral dissolution.Geochimica et Cosmochimica Acta,65:1243-1258
    Méndez-García C,Peláez AI,Mesa V,Sánchez J,Golyshina OV and Ferrer M.2015.Microbial diversity and metabolic networks in acid mine drainage habitats.Frontier in Microbiology,6:475
    Mendoza OT,Ruiz J,Villase1or ED,Guzmán AR,Cortés A,Souto SAS,Almazán AD and Bustos RR.2016.Water-rock-tailings interactions and sources of sulfur and metals in the subtropical mining region of Taxco,Guerrero(southern Mexico):A multi-isotopic approach.Applied Geochemistry,66:73-81
    Mielke RE,Pace DL,Porter T and Southam G.2003.A critical stage in the formation of acid mine drainage:Colonization of pyrite by Acidithiobacillus ferrooxidans under pH-neutral conditions.Geobiology,1(1):81-90
    Mishra S,Akcil A,Panda S and Erust C.2018.Biodesulphurization of Turkish lignite by Leptospirillum ferriphilum:Effect of ferrous iron,Span-80 and ultrasonication.Hydrometallurgy,176:166-175
    Moon HS,Kim BA,Hyun SP,Lee YH and Shin D.2017.Effect of the redox dynamics on microbial-mediated As transformation coupled with Fe and S in flow-through sediment columns.Journal of Hazardous Materials,329:280-289
    Mousavi SM,Yaghmaei S,Vossoughi M,Roostaazad R,Jafari A,Ebrahimi M,Chabok OH and Turunen I.2008.The effects of Fe(II)and Fe(III)concentration and initial pH on microbial leaching of low-grade sphalerite ore in a column reactor.Bioresource Technology,99(8):2840-2845
    Muhammad SN,Kusin FM and Madzin Z.2018.Coupled physicochemical and bacterial reduction mechanisms for passive remediation of sulfate-and metal-rich acid mine drainage.International Journal of Environmental Science and Technology,15(11):2325-2336
    Nˇancucheo I and Johnson DB.2011.Significance of microbial communities and interactions in safeguarding reactive mine tailings by ecological engineering.Applied and Environmental Microbiology,77(23):8201-8208
    Nordstrom DK.2011.Mine waters:Acidic to circumneutral.Elements,7(6):393-398
    Olson GJ.1991.Rate of pyrite bioleaching by Thiobacillus ferrooxidans:Results of an interlaboratory comparison.Applied Environmental Microbiology,57(3):642-644
    Oprime MEAG,Garcia Jr O and Cardoso AA.2001.Oxidation of H2S in acid solution by Thiobacillus ferrooxidans and Thiobacillus thiooxidans.Process of Biochemistry,37(2):111-114
    Ouyang BJ,Lu XC,Lu JJ,Li J,Wang ZH,Zhu TT,Wang RC and Geng JH.2011.An experimental study of the interaction between Acidithiobacillus ferrooxidans and sulfide ores.Acta Petrologica et Mineralogica,30(6):1021-1030(in Chinese with English abstract)
    Pisapia C,Humbert B,Chaussidon M and Mustin C.2008.Perforative corrosion of pyrite enhanced by direct attachment of Acidithiobacillus ferrooxidans.Geomicrobiology Journal,25(6):261-273
    Quatrini R,Appia-Ayme C,Denis Y,Ratouchniak J,Veloso F,Valdes J,Lefimil C,Silver S,Roberto F,Orellana O,Denizot F,Jedlicki E,Holmes D and Bonnefoy V.2006.Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling.Hydrometallurgy,83(1-4):263-272
    Rawlings DE.2002.Heavy metal mining using microbes.Annual Review of Microbiology,56:65-91
    Rodríguez Y,Ballester A,Blázquez ML,González F and Mu1oz JA.2003a.New information on the pyrite bioleaching mechanism at low and high temperature.Hydrometallurgy,71(1-2):37-46
    Rodríguez Y,Ballester A,Blázquez ML,González F and Mu1oz JA.2003b.New information on the chalcopyrite bioleaching mechanism at low and high temperature.Hydrometallurgy,71(1-2):47-56
    Rohwerder T and Sand W.2003.The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium sp.Microbiology,149(7):1699-1710
    Rohwerder T,Gehrke T,Kinzler K and Sand W.2003.Bioleaching review part A.Progress in bioleaching:Fundamentals and mechanisms of bacterial metal sulfide oxidation.Applied Microbiology and Biotechnology,63(3):239-248
    Runnells DD,Shepherd TA and Angino EE.1992.Metals in water.Determining natural background concentrations in mineralized areas.Environmental Science&Technology,26(12):2316-2323
    Sampson MI,van der Merwe JW,Harvey TJ and Bath MD.2005.Testing the ability of a low grade sphalerite concentrate to achieve autothermality during biooxidation heap leaching.Minerals Engineering,18(4):427-437
    Sand W,Gerke T,Hallmann R and Schippers A.1995.Sulfur chemistry,biofilm,and the(in)direct attack mechanism:A critical evaluation of bacterial leaching.Applied Microbiology and Biotechnology,43(6):961-966
    Sand W,Gehrke T,Jozsa PG and Schippers A.1999.Direct versus indirect bioleaching.In:Amils R and Ballester A(eds.).Biohydrometallurgy and the Environment toward the Mining of the21stCentury(Part A).Amsterdam:Elsevier,27-49
    Sand W,Gehrke T,Jozsa PG and Schippers A.2001.(Bio)chemistry of bacterial leaching-direct vs.indirect bioleaching.Hydrometallurgy,59(2-3):159-175
    Sasaki K,Tsunekawa M,Ohtsuka T and Konno H.1998.The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering.Colloids and Surfaces A:Physicochemical and Engineering Aspects,133(3):269-278
    Sasaki K,Nakamuta Y,Hirajima T and Tuovinen OH.2009.Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans.Hydrometallurgy,95(1-2):153-158
    Schippers A and Sand W.1999.Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur.Applied and Environmental Microbiology,65(1):319-321
    Schoonen MAA,Harrington AD,Laffers R and Strongin DR.2010.Role of hydrogen peroxide and hydroxyl radical in pyrite oxidation by molecular oxygen.Geochimica et Cosmochimica Acta,74(17):4971-4987
    Schrenk MO,Edwards KJ,Goodman RM,Hamers RJ and Banfield JF.1998.Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans:Implications for generation of acid mine drainage.Science,279(5356):1519-1522
    Sheoran AS and Sheoran V.2006.Heavy metal removal mechanism of acid mine drainage in wetlands:A critical review.Minerals Engineering,19(2):105-116
    Silva JCM,dos Santos EC,Heine T,de Abreu HA and Duarte HA.2017.Oxidation mechanism of arsenopyrite in the presence of water.Journal of Physical Chemistry C,121(48):26887-26894
    Silverman MP and Ehrlich HL.1964.Microbial formation and degradation of minerals.Advances in Applied Microbiology,6:153-206
    Su GZ.2009.Influence of microbe-mineral contact model on the biological oxidation of chalcopyrite.Master Degree Thesis.Nanjing:Nanjing University,1-61(in Chinese)
    Torres MA,West AJ and Li GJ.2014.Sulphide oxidation and carbonate dissolution as a source of CO2over geological timescales.Nature,507(7492):346-349
    Tributsch H.2001.Direct versus indirect bioleaching.Hydrometallurgy,59(2-3):177-185
    Tu BW,Wang FQ,Li J,Sha JH,Lu XC and Han XD.2013.Analysis of genes and proteins in Acidithiobacillus ferrooxidans during growth and attachment on pyrite under different conditions.Geomicrobiology Journal,30(3):255-267
    Tu BW,Li J,Guo YS,Guo XJ,Lu XC and Han XD.2014.Compensation phenomena found in Acidithiobacillus ferrooxidans after starvation stress.Journal of Basic Microbiology,54(6):598-606
    Tu ZH,Guo CL,Zhang T,Lu GN,Wan JJ,Liao CJ and Dang Z.2017.Investigation of intermediate sulfur species during pyrite oxidation in the presence and absence of Acidithiobacillus ferrooxidans.Hydrometallurgy,167:58-65
    Valdés J,Pedroso I,Quatrini R,Dodson RJ,Tettelin H,Blake II R,Eisen JA and Holmes DS.2008.Acidithiobacillus ferrooxidans metabolism:From genome sequence to industrial applications.BMCGenomics,9:597
    van den Brand TPH,Roest K,Chen GH,Brdjanovic D and van Loosdrecht MCM.2016.Adaptation of sulfate-reducing bacteria to sulfide exposure.Environmental Engineering Science,33(4):242-249
    Vaughan DJ and Craig JR.1978.Mineral Chemistry of Metal Sulfides.Cambridge:Cambridge University Press
    Vaughan DJ and Corkhill CL.2017.Mineralogy of sulfides.Elements,13(2):81-87
    Vera M,Schippers A and Sand W.2013.Progress in bioleaching:Fundamentals and mechanisms of bacterial metal sulfide oxidation.Part A.Applied Microbiology and Biotechnology,97(17):7529-7541
    Vreeland RH,Rosenzweig WR and Powers DW.2000.Isolation of a 250million-year-old halotolerant bacterium from a primary salt crystal.Nature,407(6806):897-900
    Vuorinen A,Hiltunen P,Hsu JC and Tuovinen OH.1983.Solubilization and speciation of iron during pyrite oxidation by Thiobacillus ferrooxidans.Geomicrobiology Journal,3(2):95-120
    Wakai S,Kikumoto M,Kanao T and Kamimura K.2004.Involvement of sulfide:Quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium,Acidithiobacillus ferrooxidans NASF-1.Bioscience,Biotechnology,and Biochemistry,68(12):2519-2528
    Wakai S,Tsujita M,Kikumoto M,Manchur MA,Kanao T and Kamimura K.2007.Purification and characterization of sulfide:Quinone oxidoreductase from an acidophilic iron-oxidizing bacterium,Acidithiobacillus ferrooxidans.Bioscience,Biotechnology,and Biochemistry,71(11):2735-2742
    Watling HR.2006.The bioleaching of sulphide minerals with emphasis on copper sulphides:A review.Hydrometallurgy,84(1-2):81-108
    Whitehead PG and Prior H.2005.Bioremediation of acid mine drainage:An introduction to the Wheal Jane wetlands project.Science of the Total Environment,338(1-2):15-21
    Wichlacz PL and Unz RF.1981.Acidophilic,heterotrophic bacteria of acidic mine waters.Applied Environmental Microbiology,41(5):1254-1261
    Williams KP and Kelly DP.2013.Proposal for a new class within the phylum Proteobacteria,Acidithiobacillia classis nov.,with the type order Acidithiobacillales,and emended description of the class Gammaproteobacteria.International Journal of Systematic and Evolutionary Microbiology,63(8):2901-2906
    Xiang WL.2018.Significant influences of light on the microbial oxidation of pyrite by Acidithiobacillus ferrooxidans.Master Degree Thesis.Nanjing:Nanjing University,1-90(in Chinese with English summary)
    Xiong XX,Gu GH,Ban JR and Li SK.2015.Bioleaching and electrochemical property of marmatite by Sulfobacillus thermosulfidooxidans.Transactions of Nonferrous Metals Society of China,25(9):3103-3110
    Xu Y and Schoonen MAA.2000.The absolute energy positions of conduction and valence bands of selected semiconducting minerals?American Mineralogist,85(3-4):543-556
    Yang Y,Liu WH and Chen M.2013.A copper and iron K-edge XANESstudy on chalcopyrite leached by mesophiles and moderate thermophiles.Minerals Engineering,48:31-35
    Yarzábal A,Brasseur G,Ratouchniak J,Lund K,Lemesle-Meunier D,De Moss JA and Bonnefoy V.2002.The high-molecular-weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein.Journal of Bacteriology,184(1):313-317
    Yin HQ,Zhang X,Li XQ,He ZL,Liang YL,Guo X,Hu Q,Xiao YH,Cong J,Ma LY,Niu JJ and Liu XD.2014.Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans.BMC Microbiology,14:179
    Zammit CM,Shuster JP,Gagen EJ and Southam G.2015.The geomicrobiology of supergene metal deposits.Elements,11(5):337-342
    Zhang XA,Lu JJ,Zong MR,Xiang WL,Li J and Lu XC.2017.Preliminary study on secondary minerals in supergene weathered skarn-type molybdenum ore in Nannihu district,Henan Province.Journal of Nanjing University(Natural Sciences),53(5):849-859(in Chinese with English abstract)
    Zhao XQ,Wang RC,Lu XC,Lu JJ,Li CX and Li J.2013.Bioleaching of chalcopyrite by Acidithiobacillus ferrooxidans.Minerals Engineering,53:184-192
    Zhu CJ,Lu JJ,Lu XC,Wang RC and Li J.2005.SEM study on jarosite mediated by Thiobacillus ferrooxidans.Geological Journal of China Universities,11(2):234-238(in Chinese with English abstract)
    Zhu TT,Lu XC,Li J,Lu JJ,Wang RC and Xu ZW.2011.Secondary minerals on arsenopyrite oxidized by Acidithiobacillus ferrooxidans.Acta Mineralogica Sinica,31(4):683-691(in Chinese with English abstract)
    Zhu TT,Lu XC,Liu H,Li J,Zhu XY,Lu JJ and Wang RC.2014.Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans.Geochimica et Cosmochimica Acta,127:120-139
    Zhu XY,Wang RC,Lu XC,Liu H,Li J,Ouyang BJ and Lu JJ.2015.Secondary minerals of weathered orpiment-realgar-bearing tailings in Shimen carbonate-type realgar mine,Changde,Central China.Mineralogy and Petrology,109(1):1-15
    Ziegler S,Dolch K,Geiger K,Krause S,Asskamp M,Eusterhues K,Kriews M,Wilhelms-Dick D,Goettlicher J,Majzlan J and Gescher J.2013.Oxygen-dependent niche formation of a pyrite-dependent acidophilic Consortium built by archaea and bacteria.The ISMEJournal,7(9):1725-1737
    白静.2014.不同成因黄铜矿极端嗜热菌浸出差异性及机理研究.博士学位论文.北京:北京有色金属研究总院,1-112
    李娟,陆建军,陆现彩,王汝成,苏贵珍.2009.氧化亚铁硫杆菌氧化黄铜矿的实验研究.南京大学学报(自然科学版),45(2):315-322
    鲁安怀.2005.矿物法---环境污染治理的第四类方法.地学前缘,12(1):196-205
    陆建军,陆现彩,朱长见,孙东平,高剑锋,王汝成.2005.氧化亚铁硫杆菌对矿山酸矿水中金属污染元素分布的影响.南京大学学报(自然科学),41(2):113-119
    陆现彩,陆建军,朱长见,刘显东,王汝成,李奇,徐兆文.2005.微生物矿化成因的铁硫酸盐矿物表面特征初探.高校地质学报,11(2):194-198
    欧阳冰洁,陆现彩,陆建军,李娟,王朝华,朱婷婷,王汝成,耿建华.2011.嗜酸性氧化亚铁硫杆菌与硫化物矿石相互作用的实验研究.岩石矿物学杂志,30(6):1021-1030
    苏贵珍.2009.细菌-矿物接触形式影响黄铜矿微生物氧化作用的实验研究.硕士学位论文.南京:南京大学,1-61
    向婉丽.2018.光对黄铁矿微生物氧化作用的影响---基于实验的认识.硕士学位论文.南京:南京大学,1-90
    张雪艾,陆建军,宗美荣,向婉丽,李娟,陆现彩.2017.河南南泥湖矽卡岩型钼矿石地表风化产物初探.南京大学学报(自然科学版),53(5):849-859
    朱长见,陆建军,陆现彩,王汝成,李奇.2005.氧化亚铁硫杆菌作用下形成的黄钾铁矾的SEM研究.高校地质学报,11(2):234-238
    朱婷婷,陆现彩,李娟,陆建军,王汝成,徐兆文.2011.Acidithiobacillus ferrooxidans氧化分解毒砂的次生产物研究.矿物学报,31(4):683-691

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700