用户名: 密码: 验证码:
煤泥浮选过程中粒度对泡沫性质的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of particle size on the froth property in coal flotation
  • 作者:谭佳琨 ; 梁龙 ; 彭耀丽 ; 谢广元
  • 英文作者:TAN Jiakun;LIANG Long;PENG Yaoli;XIE Guangyuan;Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education,School of Chemical Engineering and Technology,China University of Mining and Technology;
  • 关键词: ; 浮选 ; 泡沫特性 ; 颗粒粒度 ; 精煤灰分
  • 英文关键词:coal;;flotation;;froth property;;particle size;;clean coal ash content
  • 中文刊名:ZGKD
  • 英文刊名:Journal of China University of Mining & Technology
  • 机构:中国矿业大学煤炭加工与高效洁净利用教育部重点实验室化工学院;
  • 出版日期:2018-09-14 11:25
  • 出版单位:中国矿业大学学报
  • 年:2019
  • 期:v.48;No.226
  • 基金:国家自然科学基金项目(51474213)
  • 语种:中文;
  • 页:ZGKD201901022
  • 页数:9
  • CN:01
  • ISSN:32-1152/TD
  • 分类号:198-206
摘要
针对复杂的三相浮选泡沫,探索了不同粒度煤炭颗粒在浮选过程中产率和灰分的变化规律及其对浮选泡沫性质的影响.将煤炭浮选入料分为粗(500~250μm)、中(250~74μm)、细(-74μm)3个粒级分别进行单独和混合浮选,在入料性质不同而操作条件相同的情况下,分析各粒级煤炭的浮选精煤产率和灰分,以及相应的浮选泡沫性质,包括水回收率、均一性(气泡尺寸)、破裂气泡尺寸、破裂气泡个数和泡沫速度等.结果表明:粗颗粒的浮选精煤产率明显受到细颗粒的影响,加入细颗粒后产率从30%升高到60%,但粗颗粒精煤灰分基本不变;细颗粒的浮选产率独立性好,基本不受粗颗粒和中颗粒的影响,但细颗粒精煤灰分随粗颗粒和中颗粒的加入而升高.通过对浮选泡沫性质的分析,发现粗颗粒促使气泡破裂并破坏泡沫的稳定性,中颗粒能够显著提高泡沫速度,而细颗粒能够增强泡沫稳定性并且降低泡沫速度.当浮选入料性质,即颗粒粒度改变时,各浮选泡沫性质与精煤灰分的相关性规律与入料性质不变而操作条件改变的常规浮选不同,主要是由不同粒度颗粒的特性差异所导致.
        This paper focuses on the complicated three phase flotation froth.The yield,ash content and their effects on flotation froth of different coal particle size were discussed.The flotation feed was divided into coarse(500—250μm),medium(250—74μm),and fine(-74μm)size fractions,and flotation tests with particles of single and mixed size fractions were conducted.Then the yield and ash content of clean coal particles of different size fraction and the corresponding froth properties including water recovery,homogeneity(bubble size),bubble burst parameters and froth velocity were analyzed.Results show that the clean coal yield of coarse particles is significantly affected by the fine particles,and increases from 30% to 60%with the addition of fine particles,but the clean coal ash content of coarse particles remains almost unchanged.In contrast,the clean coal yield of fine particles is independent and not affected by the coarse particles,but the clean coal ash content of fine particles varies significantly when coarse or medium particles are added.Based on the analysis of flotation froth,it is foundthat the coarse particles can enhance bubble burst and destabilize the froth,the medium particles can improve froth velocity,and the fine particles can best stabilize the froth and decrease the froth velocity.When the flotation feed(particle size)is changed,the correlation between flotation froth and clean coal ash content is different from that of the conventional flotation with constant feed and changed operating parameters,which can be attributed to the different properties of various size particles.
引文
[1]KIRJAVAINEN V.Review and analysis of factors controlling the mechanical flotation of gangue minerals[J].International Journal of Mineral Processing,1996,46(1):21-34.
    [2]王凡,路迈西,王勇,等.煤泥浮选泡沫层中气泡特征的提取[J].中国矿业大学学报,2001,30(6):24-27.WANG Fan,LU Maixi,WANG Yong,et al.Bubble feature extracting based on image processing of coal flotation froth[J].Journal of China University of Mining&Technology,2001,30(6):24-27.
    [3]王勇,路迈西,王凡,等.表征煤泥浮选泡沫图象特征的最佳色彩方案[J].中国矿业大学学报,2002,31(6):71-73.WANG Yong,LU Maixi,WANG Fan,et al.Optimum color scheme for coal flotation froth image characteristic[J].Journal of China University of Mining&Technology,2002,31(6):71-73.
    [4]刘文礼,路迈西,王振翀,等.煤泥浮选泡沫数字图象处理研究(之一):浮选泡沫视觉特征的线邻域提取算法[J].中国矿业大学学报,2002,31(2):120-123.LIU Wenli,LU Maixi,WANG Zhenchong,et al.Research on digital image processing of coal flotation froth(Ⅰ):The liner neighbor algorithm for extracting features of digital coal flotation froth image[J].Journal of China University of Mining&Technology,2002,31(2):120-123.
    [5]刘文礼,路迈西,王振翀,等.煤泥浮选泡沫数字图象处理研究(之二):煤泥浮选泡沫视觉特征的面邻域提取算法[J].中国矿业大学学报,2002,31(3):233-236.LIUWenli,LU Maixi,WANG Zhenchong,et al.Research on digital image processing of coal flotation froth(Ⅱ):The square neighbor algorithm for extracting features of digital coal flotation froth image[J].Journal of China University of Mining&Technology,2002,31(3):233-236.
    [6]FORBES G.Texture and bubble size measurements for modelling concentrate grade in flotation froth systems[D].Cape Town:University of Cape Town,2007:171-194.
    [7]RUNGE K,MCMASTER J,WORTLEY M,et al.Acorrelation between VisiofrothTM measurements and the performance of a flotation cell[C].NELSON M,SMITH R.Ninth Mill Operators’Conference Proceedings.Melbourne:Australasian Institute of Mining and Metallurgy Publication Series,2007:79-86.
    [8]MARAIS C,ALDRICH C.Estimation of platinum flotation grades from froth image data[J].Minerals Engineering,2011,24(5):433-441.
    [9]CAO B,XIE Y,GUI W,et al.Integrated prediction model of bauxite concentrate grade based on distributed machine vision[J].Minerals Engineering,2013,53:31-38.
    [10]JAHEDSARAVANI A,MARHABAN M H,MAS-SINAEI M.Prediction of the metallurgical performances of a batch flotation system by image analysis and neural networks[J].Minerals Engineering,2014,69:137-145.
    [11]TAN J,LIANG L,PENG Y,et al.The concentrate ash content analysis of coal flotation based on froth images[J].Minerals Engineering,2016,92:9-20.
    [12]FAMEAU A L,SALONEN A.Effect of particles and aggregated structures on the foam stability and aging[J].Comptes Rendus Physique,2014,15(8):748-760.
    [13]LIU D,PENG Y.Reducing the entrainment of clay minerals in flotation using tap and saline water[J].Powder Technology,2014,253:216-222.
    [14]NEETHLING S J,CILLIERS J J.The entrainment of gangue into a flotation froth[J].International Journal of Mineral Processing,2002,64(2):123-134.
    [15]NEETHLING S J,CILLIERS J J.The entrainment factor in froth flotation:Model for particle size and other operating parameter effects[J].International Journal of Mineral Processing,2009,93(2):141-148.
    [16]NEETHLING S J,LEE H T,CILLIERS J J.Simple relationships for predicting the recovery of liquid from flowing foams and froths[J].Minerals Engineering,2003,16(11):1123-1130.
    [17]谷艳玲,冯其明,欧乐明.起泡剂对硫化矿浮选的影响[J].矿冶工程,2013,33(4):52-55.GU Yanling,FENG Qiming,OU Leming.Effect of frothers on sulfide flotation[J].Mining and Metallurgical Engineering,2013,33(4):52-55.
    [18]许灿辉.矿物浮选气泡速度和尺寸分布特征提取方法与应用[D].长沙:中南大学,2011:80-106.XU Canhui.The bubble motion velocity measurement and bubble size distribution estimation algorithms in flotation and its application[D].Changsha:Central South University,2011:80-106.
    [19]阳春华,周开军,牟学民,等.基于计算机视觉的浮选泡沫颜色及尺寸测量方法术.仪器仪表学报,2009,30(4):717-721.YANG Chunhua,ZHOU Kaijun,MOU Xuemin,et al.Froth color and size measurement method for flotation based on computer vision[J].Chinese Journal of Scientific Instrument,2009,30(4):717-721.
    [20]ALDRICH C,MARAIS C,SHEAN B,et al.Online monitoring and control of froth flotation systems with machine vision:A review[J].International Journal of Mineral Processing,2010,96(1):1-13.
    [21]林小竹,谷莹莹,赵国庆.煤泥浮选泡沫图像分割与特征提取[J].煤炭学报,2007,32(3):304-308.LIN Xiaozhu,GU Yingying,ZHAO Guoqing.Feature extraction based on image segmentation of coal flotation froth[J].Journal of China Coal Society,2007,32(3):304-308.
    [22]BARBIAN N,CILLIERS J J,MORAR S H,et al.Froth imaging,air recovery and bubble loading to describe flotation bank performance[J].International Journal of Mineral Processing,2007,84(1):81-88.
    [23]MATHWORKS.Matlab image processing toolbox user’s guide[EB/OL].2014.http://cn.mathworks.com/help/images/ref/graycoprops.html?searchHighlight=homogeneity&s_tid=doc_srchtitle.
    [24]唐朝晖,刘金平,桂卫华,等.基于数字图像处理的浮选泡沫速度特征提取及分析[J].中南大学学报(自然科学版),2009,40(6):1616-1622.TANG Zhaohui,LIU Jinping,GUI Weihua,et al.Froth bubbles speed characteristic extraction and analysis based on digital image processing[J].Journal of Central South University(Science and Technology),2009,40(6):1616-1622.
    [25]AWATEY B,SKINNER W,ZANIN M.Effect of particle size distribution on recovery of coarse chalcopyrite and galena in Denver flotation cell[J].Canadian Metallurgical Quarterly,2013,52(4):465-472.
    [26]WANG L,PENG Y,RUNGE K,et al.A review of entrainment:Mechanisms,contributing factors and modelling in flotation[J].Minerals Engineering,2015,70:77-91.
    [27]YIANATOS J,CONTRERAS F.Particle entrainment model for industrial flotation cells[J].Powder Technology,2010,197(3):260-267.
    [28]WANG B,PENG Y.The behaviour of mineral matter in fine coal flotation using saline water[J].Fuel,2013,109:309-315.
    [29]WANG B,PENG Y.The effect of saline water on mineral flotation:A critical review[J].Minerals Engineering,2014,66/68:13-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700