用户名: 密码: 验证码:
基于CFD-DEM算法的固体火箭发动机气-固两相流模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of Gas-Particle Flow in Solid Rocket Motor Based on Computational Fluid Method-Discrete Element Method
  • 作者:杨文婧 ; 匡亮 ; 褚开维 ; 刘佩进
  • 英文作者:YANG Wen-jing;KUANG Liang;CHU Kai-wei;LIU Pei-jin;National Key Laboratory of Combustion,Flow and Thermal-Structure,School of Astronautics,Northwestern Polytechnical University;ARC Research Hub of Computational Particle Technology,Department of Chemical Engineering,Monash University;
  • 关键词:固体火箭发动机 ; 离散元方法 ; 气固两相流 ; 数值模拟
  • 英文关键词:Solid rocket motor;;Discrete element method;;Gas-particle flow;;Numerical simulation
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:西北工业大学航天学院燃烧流动和热结构国家级重点实验室;蒙纳士大学化工学院ARE颗粒仿真技术研究中心;
  • 出版日期:2019-03-05 15:05
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.265
  • 基金:国家自然科学基金(2017KA020122);; 中央高校基本科研业务费(3102017ZY003)
  • 语种:中文;
  • 页:TJJS201907013
  • 页数:8
  • CN:07
  • ISSN:11-1813/V
  • 分类号:112-119
摘要
针对固体火箭发动机中含金属推进体系中颗粒冲刷烧蚀及推力两相流损失的难题,基于连续相-离散元(CFD-DEM)耦合模型,考虑颗粒间的碰撞力与非碰撞力以及颗粒-气流作用力等,对固体发动机中气-固两相流进行了数值模拟研究。研究结果表明,相比于传统的双流体模型及轨道法,CFD-DEM能提供更丰富的粒子尺度信息包括粒子的运动轨迹、颗粒间的碰撞、颗粒受力情况等等;以及粒子相与气相相互作用过程,粒子相与壁面相互作用等。粒子的碰撞在喷管收敛段壁面、喉部区域以及喷管扩张段中心区域发生,与壁面的碰撞在收敛段壁面位置,且颗粒在该区域角速度较大,气相-颗粒曳力最大值出现在气相加速区域。单个粒子尺度的流场数据为固体发动机气固两相流流场的认识提供了更加丰富的信息,并为粒子聚集聚合及对烧蚀层冲刷等提供研究基础。
        The multi-phase flow in Solid Rocket Motor(SRM)is a typical complex multi-scale flow,which plays an important role in influencing the performance and safety of SRM. The particle erosion on ablate layer and the thrust lose of gas-particle flow are the long-term concerns in solid propellant system. Compared to the conventional Two Fluid Model(TFM)and Lagrange Method,the Discrete Element Method(DEM)based gas-particle simulation is able to describe the particle behavior on microscopic level,such as particle-particle collides,particle-gas interaction force and particle-wall interaction force,and hence it has extensive applications in different areas. The Computational Fluid Dynamic(CFD)is coupled with DEM to predict the gas-particle flow in SRM. The results indicate that compared to the conventional methods,CFD-DEM could provide rich information,such as particle-particle contacts,particle-gas interactions,and all sorts of forces acted on particles. Particles are accumulated in the wall region of nozzle convergent part,in the throat,and in the central area of nozzle divergent part,which subsequently leads to frequent collides among particles and high angular velocity of particles. Drag force appears higher in the region where gas is accelerated. CFD-DEM simulation provide a new way to study the gas-particle flow in SRM,and reveal rich information on micro-and macro-level,thus would delivernew perspectivestounderstandthemulti-phaseflow in SRM,theparticleerosionsand soon.
引文
[1]陈晓龙,何国强,刘佩进,等.固体火箭发动机燃烧不稳定的影响因素分析和最新研究进展[J].固体火箭技术,2009,32(6):600-605.
    [2]庞爱民,黎小平.固体推进剂技术的创新与发展规律[J].含能材料,2015,23(1):3-6.
    [3]Hu J,Han C,Xia Z,et al.Experimental Investigation on Combustion of High-Metal Magnesium-Based Hydroreactive Fuels[J].Journal of Propulsion and Power,2015,29(3):692-698.
    [4]刘平安,王良,王璐,等.高凝相浓度喷管两相流研究进展[J].固体火箭技术,2016,(6):735-745.
    [5]Culick F E C.A Review of Calculations for Unsteady Burning of a Solid Propellant[J].AIAA Journal,1968,6(12):2241-2255.
    [6]Crowe C T,Willoughby P G.A Study of Particle Growth in a Rocket Nozzle[J].AIAA Journal,1967,5(5):1300-1304.
    [7]Cho I H,Baek S W.Numerical Simulation of Axisymmetric Solid Rocket Motor Ignition Transient with Radiation Effect[J].Journal of Propulsion and Power,2000,16(4):725-728.
    [8]肖育民,何国强,黄生洪,等.用RTR技术研究固体火箭发动机燃烧室中粒子运动轨迹(I)可行性分析与试验研究[J].推进技术,1997,18(5):41-45.(XIAO Yu-min,HE Guo-qiang,HUANG Sheng-hong,et al.Study on Feasibility Analysis and Experimental Study of Particle Motion Trajectory in Solid Rocket Engine Combustion Chamber by RTR Technology[J].Journal of Propulsion Technology,1997,18(5):41-45.)
    [9]Shi H,Yamamura K.The Interaction Between Shock Waves and Solid Spheres Arrays in a Shock Tube[J].Acta Mechanica Sinica,2004,20(3):219-227.
    [10]岳树元,施红辉,章利特.高速气固两相流输运技术实验研究[J].浙江理工大学学报,2008,25(1):60-64.
    [11]黄生洪,肖育民.用RTR技术研究固体发动机燃烧室中粒子运动轨迹:(Ⅱ)图象处理技术应用[J].推进技术,1997,18(6):36-40.(HUANG Sheng-hong,XIAOYu-min.Study on Particle Motion Trajectory in Solid Engine Combustion Chamber by RTR Technology:(II)Application of Image Processing Technology[J].Journal of Propulsion Technology,1997,18(6):36-40.)
    [12]李东霞,徐旭,蔡国飙,等.火箭发动机气体-颗粒两相流双流体模型研究[J].固体火箭技术,2005,28(4):238-243.
    [13]Chang I S.One-and Two-Phase Nozzle Flows[J].AIAAJournal,1980,18(12):1455-1461.
    [14]Dupays J.Two-Phase Unsteady Flow in Solid Rocket Motors[J].Aerospace Science&Technology,2002,6(6):413-422.
    [15]曾卓雄,姜培正.可压稀相两相流场的数值模拟[J].推进技术,2002,23(2):154-157.(ZENG Zhuoxiong,JIANG Pei-zheng.Numerical Simulation of Compressible Dilute Phase Two-Phase Flow Field[J].Journal of Propulsion Technology,2002,23(2):154-157.)
    [16]于勇,张夏,陈维.用双流体模型模拟超声速气固两相流动[J].航空动力学报,2010,25(4):800-807.
    [17]Cundall P A,Strack O D L.A Discrete Numerical-Model for Granular Assemblies[J].Geotechnique,1979,29(1):47-65.
    [18]Zhu H P,Zhou Z Y,Yang R Y,et al.Discrete Particle Simulation of Particulate Systems:Theoretical Developments[J].Chemical Engineering Science,2007,62(13):3378-3396.
    [19]Zhu H P,Zhou Z Y,Yang R Y,et al.Discrete Particle Simulation of Particulate Systems:A Review of Major Applications and Findings[J].Chemical Engineering Science,2008,63(23):5728-5770.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700