用户名: 密码: 验证码:
长期模拟升温对崇明东滩湿地土壤微生物生物量的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Responses of soil microbial biomass to long-term simulated warming in Eastern Chongming Island wetlands,China
  • 作者:高艳娜 ; 戚志伟 ; 仲启铖 ; 樊同 ; 李沙沙 ; 王开运 ; 朱红雨 ; 周婷南
  • 英文作者:GAO Yanna;QI Zhiwei;ZHONG Qicheng;FAN Tong;LI Shasha;WANG Kaiyun;ZHU Hongyu;ZHOU Tingnan;College of Ecology and Environment,East China Normal University;Shanghia Key Laboratory of Urban Ecology and Restoration;Shanghai Academy of Landscape Architecture Science and Planning;
  • 关键词:土壤微生物生物量 ; 土壤微生物生物量 ; 长期模拟升温 ; 崇明东滩湿地
  • 英文关键词:soil microbial biomass carbon;;soil microbial biomass nitrogen;;long-term simulated warming;;East Chongming Island wetlands
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:华东师范大学生态与环境科学学院;上海市城市化生态过程与生态恢复重点实验室;上海市园林科学规划研究院;
  • 出版日期:2017-09-14 10:43
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:上海市科委项目(11dz1210903);; 上海市城市化生态过程与生态恢复重点实验室2015年度开放基金(SHUES2015A02)
  • 语种:中文;
  • 页:STXB201802035
  • 页数:10
  • CN:02
  • ISSN:11-2031/Q
  • 分类号:358-367
摘要
以崇明东滩芦苇湿地为对象,采用开顶室生长箱(Open top chambers OTCs)原位模拟大气升温试验,研究了连续升温8a对崇明东滩湿地0—40cm土层土壤微生物生物量碳氮含量的影响。结果表明:连续升温显著提高了崇明东滩湿地土壤微生物生物量碳氮含量,从土壤表层到深层(0—10,10—20,20—30,30—40cm),微生物生物量碳分别增加了39.32%、70.79%、65.20%、74.09%,微生物生物量氮分别增加了66.46%、178.27%、47.24%、64.11%。但升温对土壤微生物生物量的影响因不同土层和不同季节并未表现出统一的规律,长期模拟升温显著提高4月0—20cm土层和7月0—40cm土层微生物生物量碳氮含量,对10月0—40cm土层微生物生物量碳含量没有影响,但是显著提高了10月0—40cm土层微生物生物量氮含量,同时,微生物生物量碳氮比在7月也显著提高。相关分析表明:无论在升温条件还是在对照条件下,土壤温度、含水量、总氮与土壤微生物生物量碳氮及微生物生物量碳氮比均无相关关系,升温条件下,有机碳与微生物生物量碳氮含量以及微生物生物量碳氮比呈显著正相关,但是在对照条件下有机碳与微生物生物量碳氮含量以及微生物生物量碳氮比呈显著负相关。因此,土壤有机碳是影响土壤微生物生物量碳氮含量对长期模拟升温响应的重要生态因子。
        Climate warming is one of the main characteristics of global climate change and has a significant impact on the structure and function of terrestrial ecosystems. Soil microbial biomass is a crucial component of soil ecosystem and plays an important role in biogeochemical cycles and energy flow in ecosystems. However,soil microbial biomass is highly sensitive to environmental changes,and increase in air temperature will significantly affect soil microbial biomass. Several studieshave investigated the effect of warming on soil microbial biomass,but most studies have focused on the effect of short-term simulated warming on soil microbial biomass in ecosystems such as forests,croplands,and grasslands,whereas little is known about the response of soil microbial biomass to long-term simulated warming in wetland ecosystems. Therefore,an in situ simulated warming experiment was conducted in a wetland ecosystem on Eastern Chongming Island,China. Open-top chambers( OTCs) were applied to simulate climate warming. This study investigated the effects of eight years of continuous warming on soil microbial biomass carbon and nitrogen contents at soil depths of 0-40 cm in a wetland on Eastern Chongming Island. The results showed that continuous warming significantly increased soil microbial biomass carbon and nitrogen contents. From surface to deep soil layers( 0-10,10-20,20-30,and 30-40 cm),microbial biomass carbon increased by 39. 32%,70. 79%,65. 20%,and 74. 09%,whereas microbial biomass nitrogen increased by 66. 46%,178.27%,47.24%,and 64. 11%,respectively. However,the effect of simulated warming on soil microbial biomass at different soil depths and in different seasons did not show a uniform trend. Long-term simulated warming significantly increased soil microbial biomass carbon and nitrogen contents at the 0-20 cm soil depth in April and at 0-40 cm soil depth in July,but had no effect on soil microbial biomass carbon in October,although soil microbial biomass nitrogen content also significantly increased at 0-40 cm soil depth. The ratio of microbial biomass carbon to microbial biomass nitrogen significantly increased in July. Correlation analysis showed that soil microbial biomass carbon and nitrogen were not significantly correlated with soil temperature,soil water content,and total nitrogen in the OTC and control group. Soil microbial biomass carbon and nitrogen contents and the ratio of microbial biomass carbon to microbial biomass nitrogen showed a positive correlation with the soil organic carbon in the OTC,but showed a negative correlation with the soil organic carbon in the control group. Thus,soil organic carbon is an important ecological factor affecting the responses of soil microbial biomass carbon and nitrogen to long-term simulated warming.
引文
[1]IPCC.Climate change 2007:the physical science basis.Cambridge:Cambridge University Press,2007.
    [2]Filip Z.International approach to assessing soil quality by ecologically-related biological parameters.Agriculture,Ecosystems&Environment,2002,88(2):169-174.
    [3]Jackson R B,Schenk H J,JobbáGy E G,Canadell J,Colello G D,Dickinson R E,Field C B,Friedlingstein P,Heimann M,Hibbard K,Kicklighter D W,Kleidon A,Neilson R P,Parton W J,Sala O E,Sykes M T.Belowground consequences of vegetation change and their treatment in models.Ecological Applications,2000,10(2):470-483.
    [4]Tate R L III.Soil Microbiology.2nd ed.New York:John Wiley&Sons,Inc.,2000.
    [5]Lundquist E J,Jackson L E,Scow K M,Hsu C.Changes in microbial biomass and community composition,and soil carbon and nitrogen pools after incorporation of rye into three California agricultural soils.Soil Biology and Biochemistry,1999,31(2):221-236.
    [6]张静,马玲,丁新华,陈旭日,马伟.扎龙湿地不同生境土壤微生物生物量碳氮的季节变化.生态学报,2014,34(13):3712-3719.
    [7]赵先丽,周广胜,周莉,吕国红,贾庆宇,谢艳兵.盘锦芦苇湿地土壤微生物生物量C的季节动态.土壤通报,2008,39(1):43-46.
    [8]杨凯,朱教君,张金鑫,闰巧玲.不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化.生态学报,2009,29(10):5500-5507.
    [9]彭佩钦,吴金水,黄道友,汪汉林,唐国勇,黄伟生,朱奇宏.洞庭湖区不同利用方式对土壤微生物生物量碳氮磷的影响.生态学报,2006,26(7):2261-2267.
    [10]吴建国,艾丽.祁连山3种典型生态系统土壤微生物活性和生物量碳氮含量.植物生态学报,2008,32(2):465-476.
    [11]Liski J,Nissinen A,Erhard M,Taskinen O.Climatic effects on litter decomposition from arctic tundra to tropical rainforest.Global Change Biology,2003,9(4):575-584.
    [12]Alvarez R,Santanatoglia O J,Garcia R.Effect of temperature on soil microbial biomass and its metabolic quotient in situ under different tillage systems.Biology and Fertility of Soils,1995,19(2/3):227-230.
    [13]Rinnan R,Stark S,Tolvanen A.Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath.Journal of Ecology,2009,97(4):788-800.
    [14]Van Meeteren M J M,Tietema A,Van Loon E E,Verstraten J M.Microbial dynamics and litter decomposition under a changed climate in a Dutch heathland.Applied Soil Ecology,2008,38(2):119-127.
    [15]李娜,王根绪,高永恒,王俊峰,柳林安.模拟增温对长江源区高寒草甸土壤养分状况和生物学特性的影响研究.土壤学报,2010,47(6):1214-1224.
    [16]Schindlbacher A,Rodler A,Kuffner M,Kitzlera B,Sessitschb A,Zechmeister-Boltensterna S.Experimental warming effects on the microbial community of a temperate mountain forest soil.Soil Biology and Biochemistry,2011,43(7):1417-1425.
    [17]Bai E,Li S L,Xu W H,Li W,Dai W W,Jiang P.A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics.New Phytologist,2013,199(2):441-451.
    [18]Lu S,Wang Q,Katahata S,Naramoto M,Mizunaga H.Soil microbial activities in beech forests under natural incubation conditions as affected by global warming.Pedosphere,2014,24(6):709-721.
    [19]Mcleod E,Chmura G L,Bouillon S,Salm R,Bj9rk M,Duarte C M,Lovelock C E,Schlesinger W H,Silliman B R.A blueprint for blue carbon:toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2.Frontiers in Ecology and the Environment,2011,9(10):552-560.
    [20]Wang X X,Dong S K,Gao Q Z,Zhou H K,Liu S L,Su X K,Li Y Y.Effects of short-term and long-term warming on soil nutrients,microbial biomass and enzyme activities in an alpine meadow on the Qinghai-Tibet Plateau of China.Soil Biology and Biochemistry,2014,76:140-142.
    [21]Liu Y,Li M,Zheng J W,Li L Q,Zhang X H,Zheng J F,Pan G X,Yu X Y,Wang J F.Short-term responses of microbial community and functioning to experimental CO2enrichment and warming in a Chinese paddy field.Soil Biology and Biochemistry,2014,77(7):58-68.
    [22]Xu Z F,Hu R,Xiong P,Wan C,Cao G,Liu Q.Initial soil responses to experimental warming in two contrasting forest ecosystems,Eastern Tibetan Plateau,China:nutrient availabilities,microbial properties and enzyme activities.Applied Soil Ecology,2010,46(2):291-299.
    [23]Allison S D,Mc Guire K L,Treseder K K.Resistance of microbial and soil properties to warming treatment seven years after boreal fire.Soil Biology and Biochemistry,2010,42(10):1872-1878.
    [24]吴金水,林启美,黄巧云,肖和艾.土壤微生物生物量测定方法及其应用.北京:气象出版社,2006.
    [25]吴建国,吕佳佳.土壤有机碳和氮分解对温度变化的响应机制.生态学杂志,2008,27(9):1601-1611.
    [26]Rinnan R,Michelsen A,Baath E,Jonasson S.Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem.Global Change Biology,2007,13(1):28-39.
    [27]Bell T H,Klironomos J N,Henry H A L.Seasonal responses of extracellular enzyme activity and microbial biomass to warming and nitrogen addition.Soil Science Society of America Journal,2010,74(3):820-828.
    [28]Rustad L,Campbell J,Marion G M,Norby R,Mitchell M,Hartley A,Cornelissen J,Gurevitch J.A meta-analysis of the response of soil respiration,net nitrogen mineralization,and aboveground plant growth to experimental ecosystem warming.Oecologia,2001,126(4):543-562.
    [29]冯瑞芳,杨万勤,张健.森林土壤有机层生化特性及其对气候变化的响应研究进展.应用与环境生物学报,2006,12(5):734-739.
    [30]陈华癸.土壤微生物学.上海:上海科学技术出版社,1979:311-314.
    [31]Michelsen A,Graglia E,Schmidt I K,Jonasson S,Sleep D,Quarmby C.Differential responses of grass and a dwarf shrub to long-term changes in soil microbial biomass C,N and P following factorial addition of NPK fertilizer,fungicide and labile carbon to a heath.New Phytologist,1999,143(3):523-538.
    [32]张卫建,许泉,王绪奎,卞新民.气温上升对草地土壤微生物群落结构的影响.生态学报,2004,24(8):1742-1747.
    [33]Devi N B,Yadava P S.Seasonal dynamics in soil microbial biomass C,N and P in a mixed-oak forest ecosystem of Manipur,North-east India.Applied Soil Ecology,2006,31(3):220-227.
    [34]Wardle D A.Controls of temporal variability of the soil microbial biomass:a global-scale synthesis.Soil Biology and Biochemistry,1998,30(13):1627-1637.
    [35]Jia G M,Cao J,Wang C Y,Wang G.Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin,northwest China.Forest Ecology and Management,2005,217(1):117-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700