用户名: 密码: 验证码:
祁连山林草复合流域土壤温湿度时空变化特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatio-temporal Change Characteristics of Soil Temperatures and Moistures in Forest and Grass Complex Basin in Qilian Mountains
  • 作者:赵维俊 ; 刘贤德 ; 金铭 ; 敬文茂 ; 王顺利 ; 任小凤 ; 马剑 ; 武秀荣
  • 英文作者:ZHAO Weijun;LIU Xiande;JIN Ming;JING Wenmao;WANG Shunli;REN Xiaofeng;MA Jian;WU Xiurong;Academy of Water Resources Conservation Forests in Qilian Mountains of Gansu Province;Key Laboratory of Hydrology and Water Resources of Forest Ecology and Frozen Soil of Gansu Province;
  • 关键词:林草复合流域 ; 土壤温湿度 ; 时空变化 ; 祁连山
  • 英文关键词:Forest and grass complex basin;;Soil temperature and moisture;;Spatial-temporal change;;Qilian Mountains
  • 中文刊名:TURA
  • 英文刊名:Soils
  • 机构:甘肃省祁连山水源涵养林研究院;甘肃省森林生态与冻土水文水资源重点实验室;
  • 出版日期:2018-08-15
  • 出版单位:土壤
  • 年:2018
  • 期:v.50;No.296
  • 基金:国家自然科学基金项目(91425301、31360201、41461004);; 科技基础性工作专项(2014FY120700);; 甘肃省自然科学基金项目(17JR5RG351);; 国家林业局陆地生态系统定位研究网络项目(CTERN)资助
  • 语种:中文;
  • 页:TURA201804020
  • 页数:8
  • CN:04
  • ISSN:32-1118/P
  • 分类号:153-160
摘要
利用祁连山森林生态站设在祁连山排露沟流域的青海云杉林和草地气象观测场土壤温湿度观测资料,采用对比分析及线性趋势等方法进行青海云杉林和草地2个不同下垫面土壤温湿度的时空特征分析。结果表明:(1)林草地土壤温度日变化表现为浅层(10 cm和20 cm土壤深度)土壤温度呈正弦曲线变化,深层(40、60、80 cm土壤深度)土壤温度约呈直线变化。土壤温度年变化表现为林地土壤温度7月底达到最高值,而后开始下降,翌年2月上旬达到最低值;草地土壤温度7月底达到最高值,而后开始下降,12月中旬达到最低值;林地封冻时长明显大于草地封冻时长。(2)林草地土壤湿度日变化不受太阳辐射的影响。林地不同土层土壤湿度年动态变化趋势均一致,呈现正弦曲线的变化规律;草地在土壤结冻后和未消融期间,土壤湿度较低且变化不明显;其他时间土壤湿度变化明显。(3)林地中,除40 cm深度外,其他深度土壤温湿度均保持在相对稳定的范围内,而且变化趋势基本一致。草地浅层土壤在土壤封冻前和解冻后,土壤温湿度变化趋势相反,封冻期间土壤温湿度亦保持在相对稳定的范围内,温度变化明显,湿度变化不明显;其他土层土壤温湿度总体变化趋势一致。
        The data of soil temperatures and moistures in 10 minute interval in the meteorological observation field under Picea crassifolia forestland and grassland in the Pailugou basin of the Qilian Mountain Forest Ecological Station were analyzed with the methods of comparative analysis and linear trend. Results showed that daily soil temperatures showed sinusoidal changes in 10 cm and 20 cm soil depths and linear changes in 40 cm, 60 cm and 80 cm soil depths. Soil temperature reached the highest at the end of July and then began to decline both for forestland and grassland, reached the lowest in early February for forestland and in late December for grassland. Freeze-up period of forestland is longer than that of grassland. Solar radiation did not influence the daily change of soil moisture in forestland and grassland. Dynamic changes of soil moistures were coincident and all showed sinusoidal changes in different soil depths under forestland. Soil moisture was low and changed little during the freeze-up period but changed obviously in other time. In forestland, soil temperatures and moistures were kept in a relatively stable range and with the same change trend in different soil depths except in 40 cm soil depth. In grassland, soil temperature and moisture changed inversely before soil freeze-up and after soil thaw. During the freezing period, topsoil temperature and moisture were also kept in a relatively stable range, with obvious change in temperature but unobvious change in moisture, while soil temperatures and moistures changed consistently in other soil depths.
引文
[1]汤懋苍,程国栋,林振耀.青藏高原近代气候变化及对环境的影响[M].广州:广州科技出版社,1998:261–329
    [2]张耀宗.近50年来祁连山地区的气候变化[D].兰州:西北师范大学,2009
    [3]王俊峰,吴青柏.气温升高对青藏高原沼泽草甸浅层土壤水热变化的影响[J].兰州大学学报:自然科学版,2010,46(1):33–39
    [4]张娟,沙占江,徐维新.青藏高原玉树地区巴塘高寒草甸土壤温湿特征分析[J].冰川冻土,2015,37(3):635–642
    [5]李超,张凤荣,王秀丽,等.土壤系统分类中土壤水热状况的确定方法及应用研究——以山西省为例[J].土壤,2017,49(1):177–183
    [6]胡健,吕一河,傅伯杰,等.祁连山排露沟流域土壤水热与降雨脉动沿海拔梯度变化[J].干旱区研究,2017,34(1):151–160
    [7]牛赟,刘贤德,王立,等.祁连山大野口流域青海云杉林分结构及其土壤水热特征分析[J].生态环境学报,2014,23(3):385–391
    [8]唐振兴,何志斌,刘鹄.祁连山中段林草交错带土壤水热特征及其对气象要素的响应[J].生态学报,2012,32(4):1056–1065
    [9]王金叶,田大伦,王彦辉,等.祁连山林草复合流域土壤水文效应[J].水土保持学报,2005,19(3):14–147
    [10]张立杰,赵文智,何志斌,等.祁连山典型小流域降水特征及其对径流的影响[J].冰川冻土,2008,30(5):776–777
    [11]刘鹄,赵文智,何志斌,等.祁连山浅山区不同植被类型土壤水分时间异质性[J].生态学报,2008,28(5):2390–2391
    [12]赵维俊,刘贤德,金铭,等.祁连山青海云杉林叶片-枯落物-土壤的碳氮磷生态化学计量特征[J].土壤学报,2016,53(2):477–489
    [13]赵维俊,敬文茂,赵永宏,等.祁连山大野口流域典型灌丛植物与土壤中氮磷的化学计量特征[J].土壤,2017,49(3):572–579
    [14]任璐,王顺利,于澎涛,等.祁连山2种植被下冻土的季节变化及数值模拟[J].林业科学研究,2016,29(4):596–602
    [15]姜林.祁连山西水林区典型土壤类型发生特性及系统分类研究[D].陕西杨凌:西北农林科技大学,2012
    [16]刘帅,于贵瑞,浅沼顺,等.蒙古高原中部草地土壤冻融过程及土壤含水量分布[J].土壤学报,2009,46(1):46–51
    [17]王绍令,丁永建,赵林.青藏高原局地因素对近地表层地温的影响[J].高原气象,2001,21(1):85–89
    [18]杨健,马耀明.青藏高原典型下垫面的土壤温湿特征[J].冰川冻土,2012,34(4):813–820
    [19]李卫朋,范继辉,沙玉坤,等.藏北高寒草原土壤温度变化与冻融特征[J].山地学报,2014,32(4):407–416
    [20]施婷婷,郑兴波,张丽波,等.植被对土壤热扩散特征的影响——以长白山阔叶红松林为例[J].生态学报,2015,35(12):3970–3978
    [21]任璐,王顺利,于澎涛,等.祁连山2种植被下冻土的季节变化及数值模拟[J].林业科学研究,2016,29(4):596–602
    [22]Vinnikov K Y,Robock A,Speranskaya N A,et al.Scales of temporal and spatial variability of midlatitude soil moisture[J].Journal of Geophysical Research:Atmospheres,1996,101(D3):7163–7174
    [23]马柱国,魏和林,符淙斌.中国东部区域土壤湿度的变化及其与气候变率的关系[J].气象学报,2015,58(3):278–287
    [24]王顺利,王金叶,张学龙,等.祁连山青海云杉林苔藓枯落物分布与水文特性[J].水土保持研究,2006,13(5):156–159
    [25]施婷婷,郑兴波,张丽波,等.植被对土壤热扩散特征的影响—以长白山阔叶红松林为例[J].生态学报,2015,35(12):3970–3978

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700