用户名: 密码: 验证码:
地球内部存在低应力长时间作用的黏性破坏吗?
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Is there any rheological failure for material inside earth interior due to long timeaction at low stress?
  • 作者:陈祖安 ; 李明
  • 英文作者:CHEN Zu-an;LI Ming;Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:超塑性流变 ; 流变破坏 ; 临界耗散能 ; 低应力 ; 局部化
  • 英文关键词:Superplastic rheology;;Rheological failure;;Critical dissipative energy;;Low stress;;Localization
  • 中文刊名:DQWJ
  • 英文刊名:Progress in Geophysics
  • 机构:中国科学院地质与地球物理研究所地球与行星内部物理院重点实验室;中国科学院大学;
  • 出版日期:2018-10-24 16:27
  • 出版单位:地球物理学进展
  • 年:2019
  • 期:v.34;No.153
  • 基金:国家自然科学基面上项目(41474083,41574089)资助
  • 语种:中文;
  • 页:DQWJ201901001
  • 页数:5
  • CN:01
  • ISSN:11-2982/P
  • 分类号:7-11
摘要
根据变形耗散理论,本文提出了一个长期以来被忽略的问题:地球内部低应力长时间作用下超塑性蠕变会导致黏性流变破坏吗?一些实验表明在纳米相合金和陶瓷中观察到高应变率下的超塑性,因而推断如果存在高应变率和高温在非常细粒的地质材料中也将发现超塑性.事实上对于碳酸盐的实验表明了这一点.从已有大理岩的实验结果,总结出围压在0~500 MPa,温度在0~600℃范围的临界耗散能公式.表明这样的黏性流变破坏是存在的.值得注意的是,超塑性达到破坏阶段,它的微观结构将发生变化,因而物理性质也会变化.这就意味着地球内部一些地质现象可能与黏性流变破坏存在一定的关系.如果上地幔的确存在着黏性流变破坏,结合水和熔体作用,就可解释上地幔低速高导层种种争议问题.
        Based on dissipative theory of deformation,a question neglected long term before is proposed in the paper: under long time action at low stress,can super plastic creep result in rheological failure of rock inside earth interior? Some experiment results indicate that superplasticity has been observed at high strain rates for arrange of nano-phase alloys and ceramics,and could potentially occur in fine-grained geological materials,if deformrd at high strain rates and temperatures. The experiment about carbonate also supports the guess. From the experimental results with temperature from 0 ~ 600 ℃ and pressure from 0 ~ 500 MPa on marble,we estimated the formula of critical dissipative energy with pressure and temperature. It indicates the rheological failure may exist. It is noteworthy that as soon as deformation of rock reaches failure phase,its microstructure will change, therefore property of rock will change. This means that there is the possible relationship between physical phenomenon inside earth interior and rheological failure at low stresses. If indeed rheological failure at low stresses exists in upper mantle,combining water and melt hypothesis,some dispute questions about low wave velocity and high conductivity layer in upper mantle could be explained better.
引文
Bercovici D,Karato S. 2002. Theoretical analysis of shear localization in the lithosphere [J]. Rev. Mineral. Geochem. 51(1): 387- 420.
    Billen M L. 2010. Slab dynamics in the transition zone [J]. Physics of the Earth and Planetary Interiors,183(1-2): 296-308.
    Bystricky M,Kunze K,Burlini L. et al. 2000. High shear strain of olivine aggregates: rheological and seismic consequences [J]. Science,290(5496): 1564-1567.
    Chen J H. 2009. Rheology of mantle minerals at high pressure and high temperature,and its influence on deep earthquakes [J]. Physics (in Chinese),38(7): 471- 475.陈久华. 2009. 高温高压下矿物流变强度与深源地震机制[J]. 物理,38(7): 471- 475.
    Dannberg J,Eilon Z,Faul U,et al. 2017. The importance of grain size to mantle dynamics and seismological observations [J]. Geochemistry,Geophysics,Geosystems,18(8): 3034-3061,doi: 10.1002/2017GC006944.
    Evans R L,Hirth G,Baba K,et al. 2005. Geophysical evidence from the MELT area for compositional controls on oceanic plates [J]. Nature,437(7056): 249-252.
    Forte A M,Dziewonski A M,Woodward R L. 1993. Aspherical structure of the mantle,tectonic plate motions,nonhydrostatic geoid,and topopraphy of the core-mantle boundary [M]. in Proceedings of the IUGG Symposium 6 Dynamics of the Earth’s Deep Interior and Rotation,edited by J.L. Le Mouel,135-166.
    Frohlich C. 1989. The nature of deep focus earthquakes [J]. Annual Review of Earth and Planetary Sciences,17: 227-254.
    Hansen L N,Zimmerman M E,Dillman A M,et al. 2012. Strain localization in olivine aggregates at high temperature: A laboratory comparison of constant-strain-rate and constant-stress boundary conditions [J]. Earth and Planetary Science Letters,333-334(1): 134-145.
    Heard H C. 1963. Effect of Large Changes in Strain Rate in the Experimental Deformation of Yule Marble [J]. The Journal of Geology,71(2): 162-195.
    Holyoke III C W,Tullis J. 2006. Formation and maintenance of shear zones [J]. Geology 34(2): 105-108.
    Jin J S,Shi Z Q,Fang H. et al. 1991. A preliminary study on cyclic loading experiments of marble under triaxial compression [J]. Chinese Journal of Geophysics (in Chinese),34(4): 488- 494.金济山,石泽全,方华,等. 1991. 在三轴压缩下大理岩循环加载实验的初步研究[J]. 地球物理学报,34(4): 488- 494.
    Kanamori H,Brodsky E E. 2004. The physics of earthquakes [J]. Reports on progress in Physics,67(8): 1429-1496.
    Karato S,Riedel M R,Yuen D A. 2001. Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes [J]. Physics of the Earths and Planteary Interiors,127(1- 4): 83-108.
    Linckens J,Herwegh M,Müntener O. 2015. Small quantity but large effect—How minor phases control strain localization in upper mantle shear zones [J]. Tectonophysics,643: 26- 43.
    Lizarralde D,Chave A,Hirth G,et al. 1995. Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii-to California submarine cable data [J]. Journal of Geophysical Research,100(B9): 17837-17854.
    Mohamed F A. 2005. On the origin of superplastic flow at very low stresses [J]. Materials Science and Engineering: A,410- 411: 89-94.
    Montési L G J,Hirth G. 2003. Grain size evolution and the rheology of ductile shear zones: from laboratory experiments to postseismic creep [J]. Earth Planet. Sci. Lett.,211(1-2): 97-110.
    Nicola D P,Robert H,Cecilia V,et al. 2014. Superplastic flow lubricates carbonate faults during earthquake slip [J]. Geophysical Research abstracts,Vol16,EGU2015-15340.
    Peng W,Huang X G,Bai W M. 2012. The role of water and melt on the low-velocity and high-conductivity zones in the upper mantle [J]. Progress in Geophysics (in Chinese),27(5): 1970-1980,doi: 彭伟,黄晓葛,白武明. 2012. 上地幔低速高导层成因的探讨-水和熔体的作用[J]. 地球物理学进展,27(5): 1970-1980,doi: 10.6038/j.issn.1004-2903.2012.05.018.10.6038/j.issn.1004-2903.2012.05.018.
    Regenauer-Lieb K,Yuen D A,Branlund J. 2001. The initiation of subduction: criticality by addition of water? [J] Science,294(5542): 578-580.
    Scholz C H. 2002. The mechanics of earthquakes and faulting [M]. Cambridge University Press. No.1: 20-22.
    Schultz A,Larsen J C. 1983. Analysis of zonal field morphology and data quality for a global set of magnetic observatory daily mean values [J]. Journal of Geomagnetism and Geoelectricity,35(11-12): 835-846.
    Seama N,Baba K,Utada H,et al. 2007. 1-D electrical conductivity structure beneath the Philippine Sea: results from an ocean bottom magnetotelluric survey [J]. Physics of the Earth and Planetary Interiors,162(1-2): 2-12.
    Shankland T J,Waff H S. 1977. Partial melting and electrical conductivity anomalies in the upper mantle [J]. Journal of Geophysical Research. 82(33): 5409-5417.
    Shen W. 2001. The theory of self-organization and dissipative structure and its application in geology [J]. Geology Geochemistry (in Chinese). 29(3): 1-7.申维. 2001. 自组织理论和耗散结构理论及其地学应用[J]. 地质地球化学,29(3): 1-7.
    Skemer P,Warren J M,Hansen L N. 2013. The influence of water and LPO on the initiation and evolution of mantle shear zones [J]. Earth and Planetary Science Letters,375: 222-233.
    Tommasi A,Knoll M,Vauchez A,et al. 2009. Structural reactivation in plate tectonics controlled by olivine crystal anisotropy [J]. Nat. Geosci. 2: 423- 427.
    Utada H,Koyama T,Shimizu H,et al. 2003. A semi-global reference model for electrical conductivity in the mid-mantle beneath the North Pacific region [J]. Geophysical research letter,30(4).
    Zhao L R,Zhang S Q,Yan M G. 1988. Nonequilibrium thermdynamics analysis on rheology system of superplasticity [J]. Chinese Journal of Materials Research (in Chinese),2(1): 20-22.赵林若,张少卿,颜鸣皋. 1988. 超塑性流变系统的线性非平衡态热力学分析[J]. 材料研究学报,2(1): 20-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700