用户名: 密码: 验证码:
地下洞室地震动力响应的岩体结构控制效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Control effect of large geological discontinuity on seismic response and stability of underground rock caverns
  • 作者:崔臻 ; 盛谦 ; 冷先伦 ; 罗庆姿
  • 英文作者:CUI Zhen;SHENG Qian;LENG Xian-lun;LUO Qing-zi;State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;School of Civil and Transportation Engineering, Guangdong University of Technology;
  • 关键词:地下洞室 ; 地震稳定性 ; 结构面型破坏 ; 离散单元法 ; 连续屈服模型
  • 英文关键词:underground cavern;;seismic stability;;structural failure;;discrete element method;;continuously yielding model
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室;中国科学院大学;广东工业大学土木与交通工程学院;
  • 出版日期:2018-05-10
  • 出版单位:岩土力学
  • 年:2018
  • 期:v.39;No.288
  • 基金:国家重点基础研究发展计划(973)项目(No.2015CB057905);; 国家自然科学基金资助项目(No.51779253,No.41672319);; 国家重点研发计划(No.2016YFC0401803);; 广东省自然科学基金(No.2016A030310345)~~
  • 语种:中文;
  • 页:YTLX201805034
  • 页数:14
  • CN:05
  • ISSN:42-1199/O3
  • 分类号:274-287
摘要
为了评价在层间错动带C2影响下白鹤滩地下洞室群尾调室在地震作用下的稳定性,针对其在试验中表现出来的明显的延性及法向荷载依赖性等特征,一种非线性的连续屈服(CY)模型被采用,用来描述层间错动带在静力以及地震动力作用下的复杂力学特性。在CY模型中,非连续面的变形特性采用幂函数形式表述,并且考虑了剪切破坏过程中强度的渐进性破坏。CY模型预测的C2错动带的力学行为与试验获取的结果相比较差异非常小,证明了CY模型在静力作用下的适用性。基于位移非连续假设的应力波透射理论被用来论证CY模型在动态作用下的适用性,同时将结果与线性结构面本构模型的结果进行了对比。比较结果表明,CY模型预测的规律与已有文献利用其他非线性模型得到的结论基本相同,并优于线性本构模型,理论结果在数值软件中得到了验证。3条地震波在经过特殊的反应谱匹配处理后,对白鹤滩地下洞室左岸1#尾调室进行了地震动力响应分析。分析结果表明,C2错动带在地震作用下对尾调室的变形及稳定性有明显的控制作用。地震作用下洞室整体运动趋势以刚体位移为主,岩体间相对变形为辅。相对变形中,错动带C2的相对变形占据了较大的成分。C2的相对变形以接触面上下盘的切向错动变形为主,主要发生部位为洞室顺C2走向的部位;结构面上、下盘法向变形为辅,主要发生在洞室顺C2倾向部位。通过超载法,获取了洞室的地震动力安全裕度。当超载系数从2增加到3时,C2的剪切变形、洞室的塑性区指标均剧烈增加,显示洞室的安全裕度大约在2~3之间,即洞室最大可抗拒峰值加速度为438g~657g的地震动作用。研究结论可供地下洞室的抗震设计与分析参考。
        This paper studied the seismic stability of the 1# surge chamber in the Baihetan hydropower plant under the influence of interlayer shear weakness zone(ISWZ) C2 regarded as the large dominating geological discontinuity. Based on the dependent behaviour of normal stress, a nonlinear continuous yielding(CY) model was adopted to describe the complex mechanical properties of the ISWZ C2 under static and seismic dynamics. In this model, the deformation characteristics of the discontinuity surface were expressed in terms of a power function, and the progressive destruction of the strength during shear failure was also considered. Besides, 3 DEC software was applied to verify the CY model. Then the applicability of the CY model was proved by comparing experimental results with theoretical solutions. Three ground motion waveforms were utilised to conduct the seismic analysis of the #1 surge chamber after the special response spectrum matching process. The seismic analysis confirmed the control effect of ISWZ C2 on the seismic stability of the cavern. The seismic displacement of the cavern was mainly the elastic body movement and was supplemented by the plastic deformation. Furthermore, most of the deformations were caused by the contact deformation of C2. For the contact deformation of C2, the magnitude of permanent shear deformation was larger than that of the normal deformation. The magnitude of permanent shear deformation was more obvious along the strike direction of C2, and the permanent normal displacement of C2 mainly occurred along the dip direction of C2. Finally, the seismic stability of the cavern was determined by the overload method. The measured seismic safety factor of the cavern was approximately 2~3. The findings in this study may provide helpful references for the seismic design of the underground caverns.
引文
[1]中华人民共和国国家行业编写组.DL5073-2000水工建筑物抗震设计规范[S].北京:中国电力出版社,2001.The Professional Standards Compilation Group of People’s Republic of China.DL5073-2000Specifications for seismic design of hydraulic structures[S].Beijing:China Electric Power Press,2001.
    [2]煤炭工业部规划设计院.唐山地震开滦煤矿井巷工程的震害[J].地震工程与工程振动,1982,2(1):67-77.Coal Mines Planning and Design Institute,Chinese Ministry of Coal Industry.Damage to structures and installations in the underground excavations of the Kailuan colliery during the Tangshan earthquake[J]. Earthquake Engineering and Engineering vibration,1982,2(1):67-77.
    [3]KUDOYAROV L I,SUKHANOV G K,BUNéV I,et al.State of hydropower installations in Armenia after the Spitak earthquake[J].Power Technology and Engineering(Formerly Hydrotechnical Construction),1989,23(8):450-455.
    [4]ASAKURA T,SATO Y.Mountain tunnels damage in the1995 Hyogoken-Nanbu earthquake[J].Quarterly Report of Railway Technical Research Institute,1998,39(3):9-16.
    [5]WANG W L,WANG T T,SU J J,et al.Assessment of damages in mountain tunnels due to the Taiwan Chi-Chi earthquake[J].Tunnelling and Underground Space Technology,2001,16(3):133-150.
    [6]AYDAN?,GENIS M.The seismic effects on the Bukit-Tinggi WWII underground shelter by 2007Singkarak(Solok)earthquake[C]//Proceedings of the ISRM International Symposium 2008,Fifth Asian Rock Mechanics Symposium,Tehran,Iran,24–26 November2008.Salzburg:[s.n.],2008:917-924.
    [7]WANG Z Z,GAO B,JIANG Y J,et al.Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake[J].Science in China(Series E:Technological Sciences),2009,52(2):546-558.
    [8]LI T B.Damage to mountain tunnels related to the Wenchuan earthquake and some suggestions for aseismic tunnel construction[J].Bulletin of Engineering Geology and the Environment,2011:1-12.
    [9]崔臻,盛谦,冷先伦.大型地下洞室群地震动力灾变研究综述[J].防灾减灾工程学报,2013,33(5):606-617.CUI Zhen,SHENG Qian,LENG Xian-lun.A review of study on seismic catastrophe of large-scale underground cavern group[J].Journal of Disaster Prevention and Mitigation Engineering,2013,33(5):616-617.
    [10]盛谦,崔臻,刘加进,等.传递函数在地下工程地震响应研究中的应用[J].岩土力学,2012,33(8):2253-2259.SHENG Qian,CUI Zhen,LIU Jia-jin,et al.Application study of transfer function for seismic response analysis of underground engineering[J].Rock and Soil Mechanics,2012,33(8):2253-2259.
    [11]崔臻,盛谦,宋艳华,等.地下洞室群随机地震响应研究中传递函数的应用探讨[J].岩土力学2012,33(12):3760-3767.CUI Zhen,SHENG Qian,SONG Yan-hua,et al.Application of transfer function to stochastic seismic response analysis of underground caverns[J].Rock and Soil Mechanics,2012,33(12):3760-3767.
    [12]CHANG S P,SEO J M.Seismic fragility analysis of underground rock caverns for nuclear facilities[C]//Transaction of the 14th International Conference on Structural Mechanics in Reactor Technology.Raleigh:[s.n.],1997,10:151-158.
    [13]DOWDING C H,BELYTSCHKO T B,DMYTRYSHYN O.Dynamic response of million block cavern models with parallel processing[J].Rock Mechanics and Rock Engineering,2000,33(3):207-214.
    [14]CHEN J C,CHANG Y L,LEE H C.Seismic safety analysis of Kukuan underground power cavern[J].Tunnelling and Underground Space Technology,2004,19(4-5):516-527.
    [15]GENIS M,AYDAN?.Static and dynamic stability of a large underground opening[C]//Proceedings of the Second Symposium on Underground Excavations for Transportation.Istanbul:[s.n.],2007:317-326.
    [16]AYDEN?,OHTA Y,GENI?M.et al.Response and stability of underground structures in rock mass during earthquakes[J].Rock Mechanics and Rock Engineering,2010,43(6):857-875.
    [17]ZHAO B Y,MA Z Y.Influence of cavern spacing on the stability of large cavern groups in a hydraulic power station[J].International Journal of Rock Mechanics and Mining Sciences,2009,46(3):506-513.
    [18]GOODMAN R E.Introduction to rock mechanics(2nd ed.)[M].New York:John Wiley&Sons,1989.
    [19]BANDIS S C,LUMSDEN A C,BARTON N R.Fundamentals of rock fracture deformation[J].International Journal of Rock Mechanics and Mining Sciences,1983,20(6):249-268.
    [20]XU D P,FENG X T,CUI Y J.Use of the equivalent continuum approach to model the behavior of a rock mass containing an interlayer shear weakness zone in an underground cavern excavation[J].Tunnelling and Underground Space Technology,2015,47(2):35-51.
    [21]WU Q,KULATILAKE P H S W.REV and its properties on fracture system and mechanical properties,and an orthotropic constitutive model for a jointed rock mass in a dam site in China[J].Computers and Geotechnics,2012,43(3):124-142.
    [22]CUNDALL P A,LEMOS J V.Numerical simulation of fault instability with the continuously-yielding joint model[C]//Rockbursts and Seismicity in Mines.Rotterdam:A.A.Balkema,1990.
    [23]ZHANG Y H,FU X D,SHENG Q.Modification of the discontinuous deformation analysis method and its application to seismic response analysis of large underground caverns[J].Tunnelling and Underground Space Technology,2014,40(1):241-250.
    [24]LI J C,MA G W.Analysis of blast wave interaction with a rock joint[J].Rock Mechanics and Rock Engineering,2009,43(6):777-787.
    [25]ZHAO J,CAI J G.Transmission of elastic P-waves across single fractures with a nonlinear normal deformational behavior[J].Rock Mechanics and Rock Engineering,2001,34(1):3-22.
    [26]XU D P,FENG X T,CUI Y J.An experimental study on the shear strength behavior of an interlayered shear weakness zone[J].Bulletin of Engineering Geology and Environment,2013,72(3-4):327-338.
    [27]中国电建集团华东勘测设计研究院有限公司.白鹤滩水电站可研阶段工程地质报告[R].杭州:中国电建集团华东勘测设计研究院有限公司,2006.Power China Huadong Engineering Co.,Ltd.(ECIDI).Engineering geology report for dam site selection of the Baihetan hydropower station at the feasibility study stage[R].Hangzhou:Power China Huadong Engineering Corporation,2006.
    [28]PANDE G N,BEER G,WILLIAMS J R.Numerical methods in rock mechanics[M].New York:John Wiley&Sons,1990.
    [29]JONES J P,WHITTIER J S.Waves at a flexibly bonded interface[J].Journal of Applied Mechanics,1967,34(4):905-909.
    [30]PYRAK-NOLTE L J.Seismic visibility of fractures[D].Berkeley:University of California,1988.
    [31]PYRAK-NOLTE L J.The seismic response of fractures and the interrelations among fracture properties[J].International Journal of Rock Mechanics and Mining Sciences,1996,33(8):787-802.
    [32]BARTON N R,BANDIS S.Review of predictive capabilities of JRC-JCS model in engineering practice[C]//Proceedings of International Symposium on Rock Joints.Rotterdam:A.A.Balkema,1990.
    [33]HANCOCK J,WATSON-LAMPREY J,ABRAHAMSON N A.An improved method of matching response spectra of recorded earthquake ground motion using wavelets[J].Journal of Earthquake Engineering,2006,10(Supp.1):67-89.
    [34]KUHLEMEYER R L,LYSMER J.Finite element method accuracy for wave propagation problems[J].Journal of Geotechnical and Geoenvironmental Engineering,1973,99(5):421-427.
    [35]Itasca Consulting Group.3DEC user’s manual(version5.0)[R].Minneapolis:[s.n.],2013.
    [36]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例(第2版)[M].北京:水利水电出版社,2013.CHEN Yu-min,XU Ding-ping.Basic knowledge and engineering examples of FLAC//FLAC3D(2nd eds.).[M].Beijing:China Water&Power Press,2013.
    [37]中华人民共和国国家标准编写组.GB50011—2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.The National Standards Compilation Group of People’s Republic of China.GB50011—2010 Code for seismic design of buildings[S].Beijing:China Architecture and Building Press,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700